Alkynylhalocarbenes: Generation from 1,1-Dihaloalk-2-ynes by Base Solvolysis and Reaction with Alkenes[†]

Konstantin N. Shavrin, Irina V. Krylova, Inna B. Shvedova, Galina P. Okonnishnikova,

Igor E. Dolgy and Oleg M. Nefedov * N. D. Zelinsky Institute of Organic Chemistry, USSR Academy of Sciences, 117913 Moscow B-334, Leninsky prosp. 47, USSR

A series of 1,1-dihaloalk-2-ynes 1-3 has been prepared by halogenation of the formylacetylenes 8 with PCI_5 or an equimolar mixture of PCI_5 and Br_2 . A simple, general means of access to the alkynylhalocarbenes 5 has been developed *via* base-initiated α -elimination of 1,1-dihaloalk-2-ynes (1-3). The carbenes 5a-i have been trapped by alkenes, to form 1-alkynyl-1-halocyclopropanes (11) in up to 90% yield. Under the same conditions compound 1g was converted into the buta-diene 12. Experimental evidence for the electrophilicity and the singlet nature of carbenes 5 has been obtained.

Alkynylcarbenes R(C=C), $\dot{C}H$ (n = 1, 2) with a triplet ground state have been generated 1.2 by photolysis of the appropriate diazoalkynes. Triplet dialkynylcarbenes $R(C=C)_2\dot{C}$ have been prepared by pyrolysis of the corresponding lithium salts of diethynyl ketone tosylhydrazones³ or photolysis of 1-diazo-4phenylbut-3-yn-2-one,⁴ as well as via the reaction of 3-bromo-1,5-diphenylpenta-1,3-diyne⁵ with Bu'OK. Methoxycarbonyland bromo-substituted (4-methylpent-3-en-1-ynyl)carbenes generated by photolysis⁶ of the appropriate 3,3-dimethylalk-5-ynyl-3H-pyrazoles have also been described. Taking into account the small difference between the electronegativity of the ethynyl group and that of halogen atoms, we supposed, by analogy with haloforms,⁷ that the 1,1-dihaloalk-2-ynes 1-3would x-eliminate hydrogen halide on treatment with base, to yield alkynylhalocarbenes 5 which are a new class of carbene species (Scheme 1). This assumption was later confirmed by quantum-chemical calculations.8

In this paper we report the generation of alkynylhalocarbenes 5 from 1,1-dihaloalk-2-ynes 9 1–3 and their addition to alkenes with the formation of 1-alkynyl-1-halocyclopropanes 10 (11).

Results and Discussion

The dihalides 1–3 were obtained by halogenating aldehydes 8. These labile aldehydes ¹¹ were prepared either by oxidation ¹² of the alcohols **6a–d** with the complex CrO_3 –Py–HCl (Scheme 2) or by acetolysis ¹³ of the acetals **7a–c** by formic acid, and were then used directly without isolation.

On the interaction of the aldehydes 8a-g with PCl₅ in the presence of a catalytic amount of pyridine (Py) at -20 to -10 °C, the dihalides 1a-g were obtained in 50-75% yields based on the corresponding starting compounds 6a-d or 7a-c (Table 1). On treatment of but-2-ynal 8a with an equimolar mixture of PCl₅-Br₂ in the presence of Py at -50 °C 1,1-dibromobut-2-yne 2a and the diene 9 (2:1) were obtained in 35% overall yield. Under these conditions the aldehydes 8d, f gave mixtures of the appropriate 1,1-dibromo- (2b, c) and 1-bromo-1-chloroalkynes (3a, b), which were separated by distillation.

On treatment with powdered KOH in the presence of benzyltriethylammonium chloride (BTEAC) either at 5–20 °C in CH_2Cl_2 (method A) or at 40–50 °C in hexane (method B), and also with Bu'OK at -10 °C in pentane (method C), compounds $R^1C = CCHXY \iff R^1C = C\overline{C}XY \iff R^1C = C\overline{C}X$

1 X = Cl, Y = Cl 4 5 2 X = Br, Y = Br3 X = Cl, Y = Br

Scheme 1

1a–f, **2a–c** and **3a**, **b** α -eliminated hydrogen halides to give the alkynylhalocarbenes **5a–i**, which were trapped using a sevento ten-fold molar excess of the alkene **10**, resulting in the formation of 1-alkynyl-1-halocyclopropanes **11a–y** in up to 90% yield. The use of 1-bromo-1-chloroalk-2-ynes **3a**, **b** led exclusively to the 1-alkynyl-1-chlorocyclopropanes **11**. This implies that only the alkynylchlorocarbenes **5a**, **b** were generated under these conditions. As expected, the *trans*- and *cis*-isomers of the cyclopropanes **11q–y** were formed from the unsymmetrical alkenes **10f–j** (Table 2).

The structures of cyclopropanes 11a-y were established by IR, ¹H NMR and mass spectrometry (Table 3). In particular, all of the adducts showed characteristic isotope doublets of the molecular ion which contains a bromide or a chloride atom. The IR spectra of these compounds show absorptions due to a triple bond in the region 2225-2255 cm⁻¹. Identification of the transand cis-isomers of 11q-y was achieved by comparing the chemical shifts of the ¹H NMR signals due to the protons of the substituents R^2 , R^3 , R^4 and R^5 attached to the cyclopropane ring of one isomer with the corresponding substituent protons in another isomer. In addition, the protons in the R^2 and R^3 groups of *cis*-11, being on the same side of the cyclopropane ring as the halogen atom, resonate downfield of those of trans-11 because of greater deshielding. This observation is in accordance with ¹H NMR data for the alkynyl-,¹⁴ alkenyl-¹⁵ and aryl-halocyclopropane¹⁶ isomeric pairs described in the literature.

It should be noted that the behaviour of compounds 1-3 in the presence of bases depends on the nature of the substituents at the triple bond and on the basic solvolysis conditions. Hence, on treatment with KOH under phase-transfer catalysis conditions (method A), methyl- and phenyl-substituted alkynes 1a, b reacted with the alkenes, to give cyclopropanes 11a, f, 1 in less than 5% yield, forming mainly unidentified powdered solids, which dissolved neither in water nor in organic solvents. However, when Bu'OK in pentane was employed as the base (method C), cyclopropanes 11a, f, 1 were obtained in 30-50% yield (Table 2). Compound 1g was converted into butadiene 12 using both methods A and C.

[†] This paper was submitted to mark the 150th anniversary of the Chemical Society/Royal Society of Chemistry.

Scheme 2 Pr^c = cyclopropyl, Ad = adamantyl. *Reagents and conditions:* i, CrO₃-Py-HCl, CH₂Cl₂, 15-20 °C, 2.5 h; ii, HCO₂H, CHCl₃ or CH₂Cl₂, 40-45 °C; iii, PCl₅, Py (cat.), CH₂Cl₂ or CHCl₃, -20 °C, 20-40 min; iv, PCl₃-Br₂, Py (cat.), CH₂Cl₂, -50 °C, 30 min.

Table 1 Properties of 1,1-dichloroalk-2-ynes 1

	V. II		$\delta_{11}(\text{CCl}_4; 60 \text{ M})$	lHz) ^c	,		Found	(%) (Rea	quired)
(Formula)	4 ield (%)	B.p./ C (<i>p</i> /mmHg)	Cl ₂ CH	R ¹	m/= (M ⁺)	v _{max} /cm ⁻¹ (C≡C)	C	Н	Cl
$\begin{array}{c} \textbf{la} \\ (C_4H_4Cl_2) \end{array}$	55 <i>ª</i>	68-70 (90)	6.15 (q, J = 2.1 Hz)	1.19 (3 H, d, $J = 2.1$ Hz, Me)	126/124/122	2240	39.14 (39.07)	3.32 (3.28)	57.48 (57.66)
$\begin{array}{l} \textbf{lb} \\ (C_6H_8Cl_2) \end{array}$	65 <i>ª</i>	90–92 (75)	6.12 (m)	0.95 (3 H, br t, $J = 7.0$ Hz, Me), 152 (2 H, m, CH ₂), 2.29 (2 H, br t, $J = 7.0$ Hz, CH ₂ C=)	154/152/150	2240	47.65 (47.71)	5.41 (5.34)	46.73 (46.95)
1c (C ₆ H ₆ Cl ₂)	60 <i>ª</i>	82-83 (23)	6.17 (d, J = 2.0 Hz)	0.76 (4 H, m, $2 \times CH_2$), 1.23 (1 H, m, CH)	152/150/148	2240	48.23 (48.36)	4.02 (4.06)	47.40 (47.58)
1d (C ₇ H ₁₀ Cl ₂)	60 <i>°</i>	47–48 (13)	6.30 (s)	$1.20 (9 \text{ H}, \text{s}, 3 \times \text{Me})$	168/166/164	2235	50.87 (50.94)	6.06 (6.11)	42.83 (42.96)
1e (C ₁₃ H ₁₆ Cl ₂)	75 <i>°</i>	m.p. 45	6.10 (s)	1.50–2.10 (15 H, m, Ad)	246/244/242	2235	64.15 (64.21)	6.72 (6.63)	28.96 (29.16)
$ If (C_9H_6Cl_2) $	60 <i>°</i>	76–78 (1)	6.33 (s)	7.26 (5 H, m, Ph)	188/186/184	2225	58.53 (58.42)	3.21 (3.27)	38.23 (38.32)
lg (C ₈ H ₁₂ Cl ₂ O ₂	50*)	64–65 (1)	6.20 (d, <i>J</i> = 2.0 Hz)	6.18 (6 H, t, $J = 7.0$ Hz, 2 × Me), 3.55 (4 H, m, 2 × CH ₂), 5.18 (1 H, d, J = 2.0 Hz, CH)	169/167/165 (M ⁺ – EtO), 141/139/177 (M ⁺ – EtO – C ₂ H ₄)	absent	45.44 (45.52)	5.66 (5.73)	33.51 (33.59)

^a Based on the corresponding alcohol 6. ^b Based on the corresponding acetal 7. ^c For compound 1e δ_{H} (CDCl₃; 250 MHz).

The formation of product 12 from compound 1g on reaction with base (in contrast with 1a-f) is possibly the result of stabilization of the anion 4 [$R^1 = (EtO)_2CH, X = Y = Cl$] in the mesomeric form $(EtO)_2CH\overline{C}=C=CCl_2$ due to the influence of ethoxy groups.

$$(EtO)_2 CHC \equiv CCHCl_2 \xrightarrow{i \text{ or ii}} (EtO)_2 CHCH \equiv C \equiv CCl_2$$

$$1g \qquad 12$$

Scheme 3 Reagents and conditions: i, powdered KOH, BTEAC (cat.), CH_2Cl_2 , ca. 20 °C; ii, Bu'OK, pentane, -10 °C

The addition of carbene 5c to (Z)- and (E)-but-2-enes was found to be *cis*-stereospecific, *i.e.* the *cis* relationship of \mathbb{R}^2 and \mathbb{R}^3 and of \mathbb{R}^4 and \mathbb{R}^5 in the substrate alkene were preserved in the product cyclopropanes. In accordance with the Skell hypothesis¹⁷ this carbene must be a singlet. Since all of the carbenes 5 have related structures one may assume a singlet nature for this species. It should be noted that no products resulting from the addition of carbenes 5 to alkenes *via* C-3 were found. This observation is consistent with the bent structure of carbenes 5, which prevents delocalization of the π and n electrons: ¹ RC=C(Cl)C: $\leftrightarrow \rightarrow$:C(R)C=CCl, and also provides indirect evidence for the singlet nature of this species.

Experimental evidence for the electrophilicity of carbenes 5 was provided by means of relative rate studies of bromo-(methylethynyl)carbene 5g with a set of standard alkenes, which are summarized in Table 4 together with the relative reactivity of dichlorocarbene¹⁸ under similar conditions. A plot of $\log(k_i/k_0)$ for carbene 5g vs. $\log(k_i/k_0)$ for dichlorocarbene in the standard manner gives a Moss carbenic selectivity index¹⁹ of m = 0.48 (correlation coefficient 0.986) for carbene 5g. The relative reactivity data of Table 4 and the corresponding m = 0.48 clearly establish carbene 5g as an electrophile. It is unlikely that the nature of substituents at the acetylene bond will significantly change the character of alkynylcarbenes 5, therefore all of these carbenes should be regarded as electrophilic.

Table 2 Generation of carbenes 5 and their addition to alkenes 10 with formation of cyclopropanes 11

		Carbo	ene		Alkene	e					Vald
Carbene precursors	Reaction conditions ⁴		R ¹	x		R ²	R ³	R ⁴	R ⁵	Product (cis: trans) ^b	(%)
1a	iii	5a	Me	Cl	10a	Me	н	н	Me	11a	41
la	i	5a	Me	Cl	10a	Me	Н	н	Me	11a	<5
1b	i	5b	Pr"	Cl	10 a	Me	Н	н	Me	11b	60
lc	i	5c	P۲	Cl	10a	Me	Н	н	Me	11c	80
1d	i	5d	Bu'	Cl	10a	Me	Н	Н	Me	11d	53
3a	i	5d	Bu'	Cl	10a	Me	Н	Н	Me	11d	64
3a	iii	5d	Bu'	Cl	10a	Me	Н	Н	Me	11d	60
le	i	5e	Ad	Cl	10a	Me	Н	Н	Me	11e	94
lf	iii	5f	Ph	Cl	10a	Me	Н	Н	Me	11f	60
lf	i	5f	Ph	Cl	10a	Me	Н	Н	Me	11f	<5
3b	iii	5f	Ph	Cl	10a	Me	Н	Н	Me	11f	56
2a	iii	5g	Me	Br	10a	Me	Н	Н	Me	11g	26
2b	i	5h	Bu'	Br	10a	Me	Н	Н	Me	11h	54
2b	iii	5h	Bu'	Br	10a	Me	Н	Н	Me	11h	56
2c	iii	5i	Ph	Br	10a	Me	Н	н	Me	11i	50
2c	i	5i	Ph	Br	10a	Me	Н	н	Me	11i	<5
1c	i	5c	Pr	Cl	10b	Me	Н	Me	Н	11j	78
le	i	5c	Pr	Cl	10c	н	[CH	$[1_2]_2$	Н	11k	80
la	iii	5a	Me	Cl	10d	н	[CH	$[1_2]_3$	Н	111	30
1a	i	5a	Me	Cl	10d	Н	[CH	$[1_2]_3$	Н	111	<5
1b	ii	5b	Pr"	Cl	10d	Н	[CF	$[1_2]_3$	Н	11m	60
1c	ii	5c	Pr	Cl	10d	Н	[CF	$[1_2]_3$	Н	11n	65
2a	iii	5g	Me	Br	10e	Me	Me	Me	Me	110	44
1d	i	5d	Bu'	Cl	10e	Me	Me	Me	Me	11p	77
3a	i	5d	Bu'	Cl	10e	Me	Me	Me	Me	11p	70
2a	iii	5g	Me	Br	10f	Me	Me	Н	Н	<i>cis,trans</i> -11q (1:1.7)	40
le	i	5c	Pr	Cl	10f	Me	Me	н	Н	cis,trans-11r (1:3)	84
2b	i	5h	Bu'	Br	10f	Me	Me	н	Н	cis,trans-11s (1:2.5)	40
2a	ii	5g	Me	Br	10g	Me	Me	Me	н	<i>cis,trans</i> - 11t (1:1) ^c	41
1b	i	5b	Pr"	Cl	10h	Bu"	Н	н	Н	cis,trans-11u (1:2.5) ^c	35
lc	ii	5c	Pr	Cl	10i	[CI	$[1_2]_4$	н	Н	cis,trans-11v (1:4)	42
1d	i	5d	Bu'	Cl	10i	-[CI	$[1_2]_4 -$	н	Н	$cis, trans-11w (1:3.4)^c$	93
1d	i	5d	Bu'	Cl	10j	Ph	Н	н	Н	cis,trans-11x (1:2.3)	57
2Ь	i	5đ	Bu ^r	Br	10j	Ph	Н	н	Н	cis,trans-11y (1:3)	60

^a i, Method A; ii, method B; iii, method C (see the Experimental section). ^b Ratios were determined by GLC. ^c Ratio was determined from the ¹H NMR spectrum of the distilled product.

Experimental

GLC analysis of the starting material and products was carried out on a LCM-8 MD flame ionization gas chromatograph with an integrator I-02 using the following 200 \times 0.3 cm columns: (1) 5% SP-2100 on Inerton, 20 mesh; (2) 5% ES-30 on Chromaton N-AW-DMCS, 20 mesh; (3) 15% Carbowax-6000 on Chromaton N-AW-DMCS, 20 mesh. Preparative work was performed on an LCP-71 gas chromatograph using a 200 \times 10 cm column with 15% Carbowax-6000 on Chromaton N-AW-DMCS, 30 mesh. ¹H NMR spectra were recorded on a Tesla BS-467 (60 MHz) or a Bruker WM-250 (250 MHz) spectrometer using 3–10% CCl₄ or CDCl₃ solutions with tetramethylsilane (TMS) as an internal standard. ¹³C NMR spectra were obtained on a Bruker AM-300 (70 MHz) spectroometer. Coupling constant values J are given in Hz. IR spectra were recorded for a thin films or for CCl_4 solutions on a UR-20 or a Specord M-80 spectrophotometer. Mass spectra were determined on a Varian MAT CH-6 mass spectrometer and either a Varian MAT 111 (column 300 \times 3 cm, SE-30 on Chromaton W) or a Finnigan MAT INCOS-50 gas chromatographmass spectrometer (capillary column RSL-200, 30 m \times 0.25 mm).

The following compounds were prepared according to previously described procedures: but-2-ynol 6a,²⁰ hex-2-ynol 6b,²⁰ 4,4-dimethylpent-2-ynol 6d,²⁰ 3-cyclopropylprop-2-ynol 6c,²¹ 1,1-diethoxy-3-phenylprop-2-yne 7b,²² 1,1,4,4-tetra-ethoxybut-2-yne 7c.¹³ The complex Py-CrO₃-HCl was prepared as described in ref. 23.

Jamonad	J ₀ / v d	δ _H (CDCl ₃ ; 250 MHz) ^b					-	-	Found (%) (Required)	
(Formula)	b.p./ C (p/mmHg)	R¹	R ²	R ³	R ⁴	R ⁵	(v _{max} /cm ⁻¹ (C≡C)	C	Н
11a (C ₈ H ₁₁ Cl)	59-61 (25)	1.80 (3 H, s, Me)	1.23 (3 H, s, Me)	0.93 (1 H, d, $J = 6.0$)	0.89 (1 H, d, J = 6.0)	1.20 (3 H, s, Me)	144/142	2235	67.25 (67.37)	7.73 (7.77)
11b (C ₁₀ H ₁₅ Cl)	77-79 (40)	0.71-1.1 (3 H, m, Me), 1.5 (2 H, m, CH_2), 2.2 (2 H, m, $CH_2C\equiv$)	1.28 (3 H, s, Me)	0.7-1.1 (2 H, overlapped N	m, H ³ and H ⁴ , Ae in R ¹)	1.25 (3 H. s, Me)	172/170	2245	70.32 (70.37)	8.82 (8.86)
11c (C ₁₀ H ₁₃ Cl)	62-63 (3)	0.60-0.88 (4 H, m, 2 × CH ₂),1.28(1H, m, CH)	1.30 (3 H, s, Me)	1.01 (2 H, br	s, H ³ and H ⁴)	1.23 (3 H, s, Me)	170/168	2230	71.20 (71.21)	7.74 (7.77)
11d (C ₁₁ H ₁₇ Cl)	40-43 (1)	1.22 (9 H, s, 3 × Me)	1.33 (3 H, s, Me)	1.04 (1 H, d, $J = 7.5$)	1.01 (1 H, d, $J = 7.5$)	1.26 (3 H, s, Me)	186/184	2235	71.46 (71.53)	9.23 (9.28)
11e ^a (C ₁₇ H ₂₃ Cl)		1.5-2.1 (15 H, m, Ad)	1.25 (3 H, s, Me)	0.91 (2 H, br	s, H ³ and H ⁴)	1.18 (3 H, s, Me)	264/262	2230	77.74 (77.69)	8.80 (8.82)
11f (C ₁₃ H ₁₃ Cl)	107-108 (1)	7.21–7.40 (5 H, m, Ph)	1.42 (3 H, s, Me)	1.28 (1 H, d, J = 6.0)	1.19 (1 H, d, J = 6.0)	1.39 (3 H, s, Me)	206/204	2230	76.23 (76.28)	6.39 (6.40)
11g (C ₈ H ₁₁ Br)	61-62 (37)	1.88 (3 H, s, Me)	1.35 (3 H, s, Me)	1.11 (1 H, d, $J = 5.9$)	1.05 (1 H, d, J = 5.9)	1.27 (3 H, s, Me)	188/186	2255	51.20 (51.36)	5.85 (5.93)
11h (C ₁₁ H ₁₇ Br)	69-70 (5)	1.21 (9 H, s, 3 × Me)	1.37 (3 H, s, Me)	1.17 (1 H, d, J = 8.0)	1.08 (1 H, d, J = 8.0)	1.28 (3 H, s, Me)	230/228	2235	57.73 (57.65)	7.52 (7.48)
11i (C ₁₃ H ₁₃ Br)	113-115 (1)	7.20–7.45 (5 H, m, Ph)	1.47 (3 H, s, Me)	1.36 (1 H, d, J = 6.0)	1.26 (1 H, d, J = 6.0)	1.41 (3 H, s, Me)	250/248	2225	62.76 (62.67)	5.35 (5.26)
11j (C ₁₀ H ₁₃ Cl)	78-79 (6)	0.58-0.77 (4 H, m,2 × CH ₂), 1.22 (1 H, m, CH)	1.16 (3 H, d, $J = 7.0$, Me)	0.93 (1 H, dq, <i>J</i> = 7.0, 6.0)	1.10 (3 H, d, <i>J</i> = 7.0, Me)	0.83 (1 H, dq, <i>J</i> = 7.0, 6.0)	170/168	2230	71.23 (71.21)	7.76 (7.77)
11k (C ₁₀ H ₁₁ Cl)	68-70 (2)	0.58–0.86 (4 H, m,2 × CH ₂), 1.20 (1 H, m, CH)	1.62 (1 H, d, J = 5.5)	0.95-1.16 (4	H, m, $2 \times CH_2$)	1.58 (1 H, d, <i>J</i> = 5.5)	168/166	2240	72.04 (72.07)	6.63 (6.65)
111 (C ₉ H ₁₁ Cl)	106–108 (43)	1.88 (3 H, br s, Me)	1.14 (1 H, br d, J = 6.1)	1.95–2.20 (4) 2.20–2.35 (2)	H, m, 2 × CH ₂), H, m,CH ₂)	1.07 (1 H, br d, <i>J</i> = 6.1)	156/154	2240	69.86 (69.90)	7.14 (7.17)
11m (C ₁₁ H ₁₅ Cl)	63-65 (6)	0.97(3 H, brt, J = 7.1, Me), 1.5 (2 H, m, CH ₂), 1.8-2.6 (2H, m, CH ₂ C≡)	1.15 (1 H, d, <i>J</i> = 6.0)	1.8-2.6 (6 H,	$m, 3 \times CH_2)$	1.05 (1 H, d, $J = 6.0$)	184/182	2250	72.22 (72.32)	8.24 (8.28)
11n (C ₁₁ H ₁₃ Cl)	78–79 (2)	0.60-0.83 (4 H, m, 2 × CH ₂), 1.20 (1 H, m, CH)	1.14(1 H, d, J = 6.0)	1.85–2.65 (6	$H, m, 3 \times CH_2)$	1.06 (1 H, d, $J = 6.0$)	182/180	2235	73.10 (73.13)	7.28 (7.25)
110 (C ₁₀ H ₁₅ Br)	62-63 (7)	1.92 (3 H, s, Me)	1.21 (6 H, s,	Me ² and Me ³)	1.18 (6 H, s,	Me ⁴ and Me ⁵)	218/216	2245	55.71 (55.83)	6.94 (7.03)
11p (C ₁₃ H ₂₁ Cl)	M.p. 85	1.15 (9 H, s, 3 Me)		1.07 (12 H, s, Me ²	, Me ³ , Me ⁴ and Me ⁵)		202/200	2230	73.24 (73.39)	9.91 (9.95)

1878

Table 3 Properties of cyclopropanes 11.

-		δ ₁₁ (CDCl ₃ ; 250 MHz) ^b							Found (%) (Required)	
Compound (Formula)	B.p./°C (<i>p</i> /mHg)	R¹	R ²	R³	R ⁴	R ⁵	(v _{max} /cm (C≡C)	U	Н
11q (C.HBr)	90-94 (47)							2250	51.18 (51.36)	5.84 (5.93)
cis cis trans		1.86 (3 H, s, Me) 1.93 (3 H, s, Me)	1.19 (6 H, m, M 1.18 (6 H, m, M	fe ² and Me ³) le ² and Me ³)	1.21 (2 H, m, 1.58 (2 H, m,	H ⁴ and H ⁵) H ⁴ and H ⁵)	188/186 188/186			
11r	8691 (6)						170/168	2230	71.18	7.7 (77,7)
(cis		0.58-0.78 (4 H, m, 2 × CH ₂), 1.19 (1 H, m, CH)	0.98 (6 H, m, M	1e ² and Me ³)	1.29 (2 H, m,	H ⁴ and H ⁵)				
trans		CH ₂), 1.24 (1 H, m, 2 × CH ₂), 1.24 (1 H, m, CH)	0.96 (6 H, m, M	1e ² and Me ³)	1.44 (2 H, m,	H ⁴ and H ⁵)	170/168	2230		
11s (C. H. Br)	45-48 (3)							2235	57.69 (57.65)	7.51 (7.48)
cis cis trans		1.20 (9 H, s, $3 \times Me$) 1.24 (9 H, s, $3 \times Me$)	1.08 (6 H, m, M 1.04 (6 H, m, M	fe ² and Me ³) le ² and Me ³)	1.48 (2 H, m, 1.57 (2 H, m,	H ⁴ and H ⁵) H ⁴ and H ⁵)	230/228 230/228			
11t (C ₂ H_2Br)	79-82 (13)							2240	53.62 (53.75)	6.44 (6.52)
cis cis		1.89 (3 H, s, Me)	1.11 (3 H, d, $J = 6.5$,	1.13 (3 H, s, Me)	1.27 (3 H, s, Me)	0.92 (1 H, q, $J = 6.5$, H	202/200			Ì
trans		1.93 (3 H, s, Me)	Me) $(3 H, d, J = 6.5, Me)$ Me)	1.11 (3 H, s, Me)	1.35 (3 H, s, Me)	H) $(1 H, q, J = 6.5, H)$ H)	202/200			
<i>cis-, trans-</i> 11u $(C_{12}H_{19}Cl)$	7883 (2)	0.7-1.1 (6 H, m, M	e ¹ and Me ²), 1.1–1.9 (11	H, m, CH $_2^1$, 3 × CH $_2^2$, H	³ , H ⁴ and H ⁵), 2.0–2.4 (2	H, m, CH2C≡)	200/198	2235	72.49 (72.52)	9.61 (9.64)
cis-, trans-11v $(C_{12}H_{15}CI)$	9296 (2)	0.6–1.0 (4 H, m, 2	× CH ¹ ₂), 1.1–2.1 (11 H, r	m, CH ¹ , 4 × CH $^{2.3}_{2}$, H ⁴ ai	nd H ⁵)		196/194	2240	74.00 (74.03)	7.72 (7.7)
$\frac{cis-, trans-11w}{(C_{13}H_{19}Cl)}$	97-100 (20)	1.21 (9 H, s, 3 × Mt	e ¹ in <i>trans</i> -isomer), 1.24	(9 H, s, $3 \times Me^1$ in <i>cis</i> -isc	omer), 0.8–1.6 (10 H, m, [,]	$4 \times CH_2^{2.3}, H^4 \text{ and } H^5$)	212/210	2235	74.05 (74.09)	9.06 (9.09)
11x (CHCl)	131-134 (13)							2240	77.34 (77.41)	7.32 (7.36)
cis		1.24 (9 H, s, $3 \times Me$)	7.2–7.4 (5 H, m, Ph)	1.80–2.04 (2 H	H, m, H ³ and H ⁴)	2.93 (1 H, dd, J = 8.1, 10.4)	232/234		~	
trans		1.01 (9 H, s, 3 × Me)	7.2-7.4 (5 H, m, Ph)	1.08 -2.04 (2 H	H, m, H^3 and H^4)	2.77 (1 H, dd, $J = 7.6$, 9.6)	232/234			
11y (C. , H. , Br)	105-108 (1)							2240	65.09 (64.99)	6.20 (6.18)
cis		1.29 (9 H, s, 3 × Me)	7.2–7.4 (5 H, m, Ph)	1.75 (1 H, dd, $J = 6.0$, 8 0)	1.77 (1 H, dd, J = 6.0, 9.5)	2.58 (1 H, dd, J = 8.0, 9.5)	278/276			
trans		1.03 (9 H, s, 3 × Me)	7.2-7.4 (5 H, m, Ph)	7.5 (1 H, dd, $J = 6.5$, 7.5)	1.87 (1 H, dd, $J = 6.5$, 9.5)	2.88 (1 H, dd, J = 7.5, 9.5)	278/276			
" Purified by ch	ıromatograph	y on silica gel in hexane.	^b For compounds 11a, b), c, e, k, m, p, u, v δ _{II} (CCl ₄	i; 60 MHz).					

Table 3 (continued)

Synthesis of 1,1-Dichloroalk-2-ynes **1a–d** from Prop-2-ynols **6a–d** (General Procedure).—Alcohols **6a–d** (0.25 mol) were added at 10–15 °C over 15 min to a suspension of the complex Py–CrO₃–HCl (76.8 g, 0.36 mol) in CH₂Cl₂ (500 cm³). The reaction mixture was stirred at ambient temperature for 2.5 h. After being cooled to -10 °C the mixture was filtered through neutral Al₂O₃. To the resulting solution at -20 °C pyridine (2 g, 0.025 mol) and then powdered PCl₅ (48 g, 0.23 mol) were added. The reaction mixture was stirred at -20 °C for 20–30 min and neutralized with NaHCO₃ (105 g, 1.25 mol). The mixture was kept at 0–5 °C for 16 h and the solid was filtered off. After evaporation of the filtrate the residue was distilled *in vacuo*.

1,1-Dichlorobut-2-yne **1a**, 1,1-dichlorohex-2-yne **1b**, 1,1-dichloro-3-cyclopropylprop-2-yne **1c** and 1,1-dichloro-4,4-dimethylpent-2-yne **1d** were obtained in this way. The yields and properties of these compounds are given in Table 1.

Synthesis of 1,1-Dichloroalk-2-ynes 1e-g from Propargyl Acetals 7a-c (General Procedure).—A solution of formic acid (90 cm³, 2.3 mol) in CHCl₃ (85 cm³) was added to a solution of the acetal (0.1 mol) and CHCl₃ (120 cm³) at 40–45 °C. After being cooled to 20 °C the mixture was washed with water until a pH of 6 was achieved and dried over MgSO₄. The resulting solution of the aldehyde in CHCl₃ then was chlorinated with PCl₅ as described above. 3-Adamantyl-1,1-dichloroprop-2-yne 1e, 1,1-dichloro-3-phenylprop-2-yne 1f and 1,1-dichloro-4,4-diethoxybut-2-yne 1g were obtained according to this procedure. The yields and properties of these compounds are given in Table 1.

Synthesis of 1,1-Dibromoalk-2-ynes 2a-c and 1-Bromo-1chloroalk-2-ynes 3a, b from Alcohols 6 (General Procedure).-To a suspension of the complex Py-CrO₃-HCl (72.8 g, 0.34 mol) in CH_2Cl_2 (450 cm³) at 10–15 °C was added the alcohol **6** over 15 min. The mixture was stirred at ambient temperature for 2.5 h and filtered through neutral Al₂O₃. Pyridine (1.6 g, 0.02 mol) and then a mixture of PCl₃ and Br₂ [obtained previously by addition of Br₂ (32.4 g, 0.2 mol) to a solution of PCl₃ (27.4 g, 0.2 mol) in CH₂Cl₂ (90 cm³) at -20 °C and subsequent stirring for 1 h at 0 °C] were added to the filtrate at -70 °C. The mixture was stirred at -50 °C until the starting aldehyde disappeared (monitored by GLC, ca. 40 min) and worked up with NaHCO₃, as described above. After removal of the solid, the resulting solution was filtered through silica gel. The solvent was evaporated off and the residue was distilled in vacuo to yield compounds 2 and 3.

1,1-Dibromobut-2-yne **2a**. As described above, starting from alcohol **6a** (14.02 g, 0.2 mol) a mixture (14.83 g, 35%) of compound **2a** and 1,3-dibromobuta-1,2-diene **9** was obtained in a 2:1 ratio, b.p. 80–89 °C at 25 mmHg. After distillation compound **2a** was isolated, b.p. 87–89 °C at 25 mmHg; v_{max}/cm^{-1} 2247 (C=C); $\delta_{H}(250 \text{ MHz}; \text{ CDCl}_3)$ 2.04 (3 H, d, J = 3, CH₃) and 6.07 (1 H, q, J = 3, C=CH); m/z 133/131 (M⁺ - Br), 81/79, 52 (M⁺ - 2Br), 51 (M⁺ - Br - HBr) (Found: C, 22.6; H, 1.9. C₄H₄Br₂ requires C, 22.67; H, 1.90%).

Compound 9 was identified without being separated from the mixture, v_{max}/cm^{-1} 1960 (C=C=C); $\delta_{H}(250 \text{ MHz}; \text{ CDCl}_3)$ 2.43 (3 H, d, J = 3, CH₃) and 6.09 (1 H, q, J = 3, C=CH); m/z 133/131 (M⁺ – Br), 81/79, 52 (M⁺ – 2Br) and 51 (M⁺ – Br – HBr).

In the same way, starting from 4,4-dimethylpent-2-ynol **6d** (22.5 g, 0.2 mol) a mixture (14.4 g, 30%) of compounds **2b** and **3a** was obtained in the ratio 4:1 and were separated by distillation.

Compound **2b**, b.p. 64–65 °C at 3 mmHg; v_{max}/cm^{-1} 2235 (C=C); $\delta_{H}(60 \text{ MHz}; \text{ CCl}_4)$ 1.18 (9 H, s, 3 × CH₃) and 5.94 (1 H, s, CHBr₂); m/z 175/173 (M⁺ – Br), 160/158 (M⁺ – Br –

Table 4 Relative reactivities of bromo(methylethynyl)carbene 5g and dichlorocarbene Cl_2C : towards alkenes

Alkene	MeC≡CĊBr	Cl ₂ C: ^a	
2,3-Dimethylbut-2-ene	3.12 + 0.05	7.41	
2-Methylbut-2-ene	1.64 ± 0.03	3.05	
2-Methylpropene	1	1	
(Z)-But-2-ene	0.59 ± 0.05	0.23	

^a Via CHCl₃, Bu'OK.¹⁸

CH₃), 94 (M⁺ – 2Br) and 79/77 (Found: C, 33.25; H, 4.1. $C_7H_{10}Br_2$ requires C, 33.11; H, 3.97%).

Compound **3a**, b.p. 50–52 °C at 3 mmHg, ν_{max}/cm^{-1} 2235 (C=C); $\delta_{H}(60 \text{ MHz}; \text{ CCl}_4)$ 1.17 (9 H, s, 3 × CH₃) and 6.00 (1 H, s, CHClBr); m/z 131/129 (M⁺ – Br), 116/114 (M⁺ – Br – CH₃), 94 (M⁺ – Br – Cl) and 79/77 (Found: C, 40.0; H, 4.7. C₇H₁₀BrCl requires C, 40.13; H, 4.81%).

1,1-Dibromo-3-phenylprop-2-yne **2c** and 1-Bromo-1-chloro-3phenylprop-2-yne **3b**.—A mixture of PCl₃ and Br₂ [which had previously been obtained by addition of Br₂ (32.4 g, 0.2 mol) to a solution of PCl₃ (27.4 g, 0.2 mol) in CH₂Cl₂ (90 cm³) at -20 °C and subsequent stirring for 1 h at 0 °C] was added to a solution of phenyl(formyl)acetylene **8f** (26 g, 0.2 mol) and pyridine (1.6 g, 0.02 mol), in CH₂Cl₂ (250 cm³) at -50 °C. The mixture was stirred at -50 °C until the aldehyde **8f** disappeared (ca. 40 min, GLC monitoring) and treated with NaHCO₃ as described above. After removal of the solid, the resulting residue was filtered through silica gel. After evaporation the residue was distilled *in vacuo*, to yield an equimolar mixture of compounds **2c** and **3b**, b.p. 106–125 °C at 1 mmHg. The products were separated by distillation.

Compound **2c**, b.p. 125–126 °C at 1 mmHg; v_{max}/cm^{-1} 2212 (C=C); $\delta_{H}(60 \text{ MHz}; \text{CCl}_{4})$ 6.17 (1 H, s, CHBr₂) and 7.28 (5 H, m, C₆H₅); m/z 276/274/272 (M⁺), 195/193 (M⁺ – Br) and 114 (M⁺ – 2Br) (Found: C, 39.6; H, 2.3. C₉H₆Br₂ requires C, 39.46; H, 2.21%).

Compound **3b**, b.p. 105–106 °C at 1 mmHg; v_{max}/cm^{-1} 2214 (C=C); $\delta_{H}(60 \text{ MHz}; \text{CCl}_{4})$ 6.30 (1 H, s, CHClBr) and 7.28 (5 H, m, C₆H₅); m/z 232/230/228 (M⁺), 195/193 (M⁺ - Cl), 151/149 (M⁺ - Br) and 114 (M⁺ - Br - Cl) (Found: C, 47.0; H, 2.55. C₉H₆BrCl requires C, 47.10; H, 2.64%).

Basic Solvolysis of 1,1-Dihaloalk-2-ynes 1 in the Presence of Alkenes (General Procedure).—Method A. The dichloride 1 (0.01 mol) was added to a suspension of an alkene (0.07–0.1 mol), powdered KOH (2.2 g, 0.04 mol) and BTEAC (0.1 g, 0.0005 mol) in CH_2Cl_2 (20 cm³) at 5–20 °C for 15 min. The mixture was stirred at ambient temperature until the starting dichloride 1 had disappeared (2–4 h, GLC monitoring) and filtered. Thereafter, the solvent was evaporated off and the resulting residue was distilled *in vacuo*.

Method B. The dichloride 1 was added to a suspension of the alkene (0.07–0.1 mol), powdered KOH (2.2 g, 0.04 mol) and BTEAC (0.1 g, 0.0005 mol) in hexane (20 cm³) for 15 min. The mixture was stirred at 40–45 °C until the starting dichloride had disappeared (3–5 h, GLC monitoring) and filtered. The solvent was evaporated off and the residue was distilled *in vacuo*.

Method C. Compound 1 (0.01 mol) was added to a suspension of alkene (0.07–0.1 mol) and Bu'OK (2.24 g, 0.02 mol) in pentane (10 cm³) cooled to -20 °C. The reaction mixture was stirred at ambient temperature for 0.5 h. The temperature was then raised to 0 °C and stirring was continued until the starting dichloride had disappeared (GLC monitoring). The solid was filtered off through silica gel. After evaporation of the filtrate the residue was distilled *in vacuo*. The preparative data and properties of cyclopropanes **11a-y** prepared in this way are given in Tables 2 and 3.

1,1-Dichloro-4,4-diethoxybuta-1,2-diene **12**.—As described above (method A), starting from the dichloride **1g** (1.8 g, 8.5 mmol) in the presence of alkene **10e**, the title compound **12** (1.2 g, 67%) was obtained, b.p. 56–58 °C at 1 mmHg; v_{max}/cm^{-1} 1975 (C=C=C); m/z 165 (M⁺ – C₂H₅O, 12%), 109 (28), 103 (70), 75 (52) and 47 (100); $\delta_{\rm H}$ 1.17 (6 H, t, J = 7.0, 2 × CH₃), 3.50 (4 H, m, 2 × CH₂), 4.90 (1 H, d, J = 5.0, CH) and 5.53 (1 H, d, J = 5.0, CH=) (Found: C, 45.45; H, 5.7. C₈H₁₂Cl₂O₂ requires C, 45.52; H, 5.73%).

Similarly, starting from the dichloride 1g (0.9 g, 4.25 mmol) and using method C only, the diene 12 (0.4 g, 44%) was again obtained.

Stereoselectivity of Addition of Chloro(cyclopropylethynyl)carbene 5c to (Z)- and (E)-But-2-enes.—The reaction of the dichloride 1c with (Z)-but-2-ene 10f [>99% pure, (E)-but-2-ene 10b impurity <1%] was carried out as above (method A). When the reaction was complete the mixture was analysed using GC [column (3), at 170 °C] and was found to contain *cis*-(66.7 \pm 0.5%) and *trans*-isomers (33.1 \pm 0.5%) of *cis*-1-chloro-1-cyclopropylethynyl-2,3-dimethylcyclopropane 11r and only a trace amount of *trans*-2,3-dimethylcyclopropane 11j, which evidently originated from 10b in the starting alkene. The *cis*and *trans*-isomers were established by IR, ¹H NMR and mass spectrometry (see Table 2).

The reaction with (E)-but-2-ene **10b** [>99% pure, (Z)-but-2ene **10f** impurity <1%] was carried out in a manner similar to that described for **10f**. GC analysis [column (3), at 170 °C] showed that *trans*-dimethylcyclopropane **11j** and only traces of cyclopropane *cis*-, *trans*-**11r** were formed. The properties and spectral data of **11j** are listed in Tables 2 and 3.

Relative Rate Determinations for Bromo(methylethynyl)carbene 5g (General Procedure).—The dibromide 2a (2.1 g, 0.01 mol) was added to a suspension of freshly sublimed Bu'OK (2.24 g, 0.02 mol) in a solution of a binary mixture of the appropriate alkene [2,3-dimethylbut-2-ene, 2-methylbut-2-ene or (Z)-but-2ene] (0.1 mol) and 2-methylpropene (5.6 g, 0.1 mol) in pentane (20 cm³) at -10 °C under Ar. After being stirred for 30 min at the same temperature the mixture was analysed by means of analytical flame ionization GC coupled to an integrator [column (1), at 120 °C]. Six product ratios were determined for each pair of alkenes and averaged. The determined relative rates are summarized in Table 4. These were used for the calculation of Moss carbonic selectivity index, which is defined as the least-squares slope of $\log(k_i/k_o)$ for carbone **5g** vs. $\log(k_i/k_o)$ for dichlorocarbone, m = 0.48, correlation coefficient 0.986.

References

- 1 W. Kirmse, Carbene Chemistry, Academic Press, New York and London, 1971, 278.
- 2 P. J. Stang, *Chem. Rev.*, 1978, **78**, 383; M. B. D'Amore and R. G. Bergman, *J. Am. Chem. Soc.*, 1969, **91**, 5694; R. G. Bergman and V. I. Rajadhyaksha, *J. Am. Chem. Soc.*, 1970, **92**, 2163; P. S. Skell and J. Klebe, *J. Am. Chem. Soc.*, 1960, **82**, 247; R. J. Kempf, J. V. Gramans and P. S. Skell, *J. Chem. Phys.*, 1965, **43**, 196.
- 3 H. Hauptmann, Tetrahedron, 1976, 32, 1293.
- 4 R. Selvarajan and J. H. Boyer, J. Org. Chem., 1971, 36, 1679.
- 5 Y. Hori, K. Noda, S. Kobayshi and H. Tanigachi, *Tetrahedron Lett.*, 1969, **10**, 3563.
- 6 M. Franck-Neumann and P. Geoffroy, *Tetrahedron Lett.*, 1983, 24, 1779; M. Franck-Neumann, P. Geoffroy and J. J. Lohmann, *Tetrahedron Lett.*, 1983, 24, 1775.
- 7 W. Kirmse, *Carbene Chemistry*, Academic Press, New York and London, 1971, 136; O. M. Nefedov, A. I. Ioffe and L. G. Menchikov, *Carbene Chemistry*, Chimia, Moscow, 1990.
- 8 V. I. Faustov and A. I. Ioffe in Chemistry of Carbenes and Small-sized Cyclic Compounds, ed. O. M. Nefedov, MIR, Moscow, 1989.
- 9 K. N. Shavrin, I. E. Dolgy and O. M. Nefedov, SSSR P 1131174/1984.
- 10 K. N. Shavrin and O. M. Nefedov, *Izv. Akad. Nauk SSSR. Ser. Khim.*, 1987, 1196; K. N. Shavrin, I. E. Dolgy and O. M. Nefedov, USSR P 1100816/1984.
- 11 J. C. Sauer, Org. Synth., Coll. Vol. 4, 1963, 813.
- 12 G. Piancatelli, A. Scettri and M. D'Auria, Synthesis, 1982, 245.
- 13 A. Gorgues and A. Le Coq, Tetrahedron Lett., 1979, 4825.
- 14 T. Liese and A. de Meijere, Chem. Ber., 1986, 119, 2995.
- 15 S. Keyaniyan, W. Göthling and A. de Meijere, *Chem. Ber.*, 1987, 120, 395: W. Weber and A. de Meijere, *Chem. Ber.*, 1985, 118, 2450.
- 16 R. A. Moss and R. Gerstl, *Tetrahedron*, 1966, **22**, 2637; R. A. Moss, J. R. Whittle and P. Freidenreich, J. Org. Chem., 1969, **34**, 2220.
- 17 P. S. Skell and A. Y. Garner, J. Am. Chem. Soc., 1956, 78, 5430; P. S. Skell and R. C. Woodworth, J. Am. Chem. Soc., 1956, 78, 3409, 4496.
- 18 R. A. Moss and R. Gerstl, J. Org. Chem., 1967, 32, 2268.
- 19 R. A. Moss, Acc. Chem. Res., 1980, 13, 58.
- 20 K. E. Schulte and K. P. Reiss, Chem. Ber., 1954, 87, 964.
- 21 I. E. Dolgy, K. N. Shavrin and S. V. Pavlycheva, *Izv. Akad. Nauk* SSSR, Ser. Khim., 1985, 2146.
- 22 B. W. Howk and J. C. Sauer, Org. Synth., Coll. Vol. 4, 1963, 801.
- 23 E. J. Corey and J. W. Suggs, Tetrahedron Lett., 1975, 2647.

Paper 1/04146K Received 8th August 1991 Accepted 30th August 1991