Alkynylhalocarbenes: Generation from 1,1-Dihaloalk-2-ynes by Base Solvolysis and Reaction with Alkenes \dagger

Konstantin N. Shavrin, Irina V. Krylova, Inna B. Shvedova, Galina P. Okonnishnikova, Igor E. Dolgy and Oleg M. Nefedov*
N. D. Zelinsky Institute of Organic Chemistry, USSR Academy of Sciences, 117913 Moscow B-334, Leninsky prosp. 47, USSR

Abstract

A series of 1,1-dihaloalk-2-ynes 1-3 has been prepared by halogenation of the formylacetylenes 8 with PCl_{5} or an equimolar mixture of PCl_{5} and Br_{2}. A simple, general means of access to the alkynylhalocarbenes 5 has been developed via base-initiated α-elimination of 1,1 -dihaloalk-2-ynes (1-3). The carbenes 5 a-i have been trapped by alkenes, to form 1 -alkynyl-1-halocyclopropanes (11) in up to 90% yield. Under the same conditions compound $\mathbf{1 g}$ was converted into the butadiene 12. Experimental evidence for the electrophilicity and the singlet nature of carbenes 5 has been obtained.

Alkynylcarbenes $\mathrm{R}(\mathrm{C} \equiv \mathrm{C})_{n} \dot{\mathrm{C}} \mathrm{H}(n=1,2)$ with a triplet ground state have been generated ${ }^{1.2}$ by photolysis of the appropriate diazoalkynes. Triplet dialkynylcarbenes $\mathrm{R}(\mathrm{C} \equiv \mathrm{C})_{2} \dot{\mathrm{C}}$ have been prepared by pyrolysis of the corresponding lithium salts of diethynyl ketone tosylhydrazones ${ }^{3}$ or photolysis of 1-diazo-4-phenylbut-3-yn-2-one, ${ }^{4}$ as well as via the reaction of 3-bromo1,5 -diphenylpenta-1,3-diyne ${ }^{5}$ with ButOK. Methoxycarbonyland bromo-substituted (4-methylpent-3-en-1-ynyl)carbenes generated by photolysis ${ }^{6}$ of the appropriate 3,3 -dimethylalk5 -ynyl-3H-pyrazoles have also been described. Taking into account the small difference between the electronegativity of the ethynyl group and that of halogen atoms, we supposed, by analogy with haloforms, ${ }^{7}$ that the 1,1-dihaloalk-2-ynes 1-3 would x-eliminate hydrogen halide on treatment with base, to yield alkynylhalocarbenes 5 which are a new class of carbene species (Scheme 1). This assumption was later confirmed by quantum-chemical calculations. ${ }^{8}$

In this paper we report the generation of alkynylhalocarbenes 5 from 1,1-dihaloalk-2-ynes ${ }^{9} \mathbf{1 - 3}$ and their addition to alkenes with the formation of 1-alkynyl-1-halocyclopropanes ${ }^{10}$ (11).

Results and Discussion

The dihalides 1-3 were obtained by halogenating aldehydes 8 . These labile aldehydes ${ }^{11}$ were prepared either by oxidation ${ }^{12}$ of the alcohols 6a-d with the complex $\mathrm{CrO}_{3}-\mathrm{Py}-\mathrm{HCl}$ (Scheme 2) or by acetolysis ${ }^{13}$ of the acetals $7 \mathrm{a}-\mathrm{c}$ by formic acid, and were then used directly without isolation.

On the interaction of the aldehydes $\mathbf{8 a - g}$ with PCl_{5} in the presence of a catalytic amount of pyridine (Py) at -20 to $-10^{\circ} \mathrm{C}$, the dihalides $1 \mathbf{a - g}$ were obtained in $50-75 \%$ yields based on the corresponding starting compounds 6a-d or $7 \mathbf{a}-\mathbf{c}$ (Table 1). On treatment of but-2-ynal 8a with an equimolar mixture of $\mathrm{PCl}_{5}-\mathrm{Br}_{2}$ in the presence of Py at $-50^{\circ} \mathrm{C} 1,1-$ dibromobut-2-yne 2a and the diene 9 (2:1) were obtained in 35% overall yield. Under these conditions the aldehydes 8d, f gave mixtures of the appropriate 1,1 -dibromo- ($\mathbf{2 b}, \mathbf{c}$) and 1 -bromo-1-chloroalkynes (3a, b), which were separated by distillation.
On treatment with powdered KOH in the presence of benzyltriethylammonium chloride (BTEAC) either at $5-20^{\circ} \mathrm{C}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(\operatorname{method} \mathrm{~A})$ or at $40-50^{\circ} \mathrm{C}$ in hexane (method B$)$, and also with Bu'OK at $-10^{\circ} \mathrm{C}$ in pentane (method C), compounds

[^0]\[

$$
\begin{aligned}
& \mathrm{R}^{1} \mathrm{C} \equiv \mathrm{CCHXY} \rightleftarrows \mathrm{R}^{1} \mathrm{C} \equiv \mathrm{C} \dot{\mathrm{C}} \mathrm{XY} \rightleftarrows \mathrm{R}^{1} \mathrm{C} \equiv \mathrm{C} \ddot{\mathrm{C}} \mathrm{X} \\
& \mathbf{1 X}=\mathrm{Cl}, \mathrm{Y}=\mathrm{Cl} \\
& \mathbf{2} \mathrm{X}=\mathrm{Br}, \mathrm{Y}=\mathrm{Br} \\
& \mathbf{3 X}=\mathrm{Cl}, \mathrm{Y}=\mathrm{Br}
\end{aligned}
$$
\]

Scheme 1

1a-f, 2a-c and 3a, b x-eliminated hydrogen halides to give the alkynylhalocarbenes 5a-i, which were trapped using a sevento ten-fold molar excess of the alkene 10 , resulting in the formation of 1-alkynyl-1-halocyclopropanes 11a-y in up to 90% yield. The use of 1 -bromo-1-chloroalk-2-ynes 3a, b led exclusively to the 1 -alkynyl-1-chlorocyclopropanes 11 . This implies that only the alkynylchlorocarbenes $\mathbf{5 a}$, \mathbf{b} were generated under these conditions. As expected, the trans- and cisisomers of the cyclopropanes 11q-y were formed from the unsymmetrical alkenes $\mathbf{1 0 f}-\mathbf{j}$ (Table 2).
The structures of cyclopropanes 11a-y were established by IR, ${ }^{1} \mathrm{H}$ NMR and mass spectrometry (Table 3). In particular, all of the adducts showed characteristic isotope doublets of the molecular ion which contains a bromide or a chloride atom. The IR spectra of these compounds show absorptions due to a triple bond in the region $2225-2255 \mathrm{~cm}^{-1}$. Identification of the transand cis-isomers of $11 \mathbf{q - y}$ was achieved by comparing the chemical shifts of the ${ }^{1} \mathrm{H}$ NMR signals due to the protons of the substituents R^{2}, R^{3}, R^{4} and R^{5} attached to the cyclopropane ring of one isomer with the corresponding substituent protons in another isomer. In addition, the protons in the R^{2} and R^{3} groups of cis-11, being on the same side of the cyclopropane ring as the halogen atom, resonate downfield of those of trans-11 because of greater deshielding. This observation is in accordance with ${ }^{1} \mathrm{H}$ NMR data for the alkynyl-, ${ }^{14}$ alkenyl- ${ }^{15}$ and aryl-halocyclopropane ${ }^{16}$ isomeric pairs described in the literature.

It should be noted that the behaviour of compounds 1-3 in the presence of bases depends on the nature of the substituents at the triple bond and on the basic solvolysis conditions. Hence, on treatment with KOH under phase-transfer catalysis conditions (method A), methyl- and phenyl-substituted alkynes 1a, b reacted with the alkenes, to give cyclopropanes 11a, $\mathbf{f}, \mathbf{1}$ in less than 5% yield, forming mainly unidentified powdered solids, which dissolved neither in water nor in organic solvents. However, when $\mathrm{Bu}^{\prime} \mathrm{OK}$ in pentane was employed as the base (method C), cyclopropanes $11 \mathrm{a}, \mathbf{f}, \mathrm{I}$ were obtained in $30-50 \%$ yield (Table 2). Compound 1 g was converted into butadiene 12 using both methods A and C.

Scheme $2 \mathrm{Pr}^{c}=$ cyclopropyl, $\mathrm{Ad}=$ adamantyl. Reagents and conditions: i, $\mathrm{CrO}_{3}-\mathrm{Py}-\mathrm{HCl}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 15-20^{\circ} \mathrm{C}, 2.5 \mathrm{~h}$; ii, $\mathrm{HCO}_{2} \mathrm{H}, \mathrm{CHCl}_{3}$ or $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, $40-45^{\circ} \mathrm{C}$; iii, $\mathrm{PCl}_{5}, \mathrm{Py}$ (cat.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ or $\mathrm{CHCl}_{3},-20^{\circ} \mathrm{C}, 20-40 \mathrm{~min}$; iv, $\mathrm{PCl}_{3}-\mathrm{Br}_{2}, \mathrm{Py}$ (cat.), $\mathrm{CH}_{2} \mathrm{Cl}_{2},-50^{\circ} \mathrm{C}, 30 \mathrm{~min}$.

Table 1 Properties of 1,1-dichloroalk-2-ynes 1

Compound (Formula)	Yield (\%)	$\begin{aligned} & \text { B.p. } / \mathrm{C} \\ & (p / \mathrm{mmHg}) \end{aligned}$	$\delta_{11}\left(\mathrm{CCl}_{4} ; 60 \mathrm{MHz}\right)^{\text {c }}$		$\begin{aligned} & m /= \\ & \left(\mathbf{M}^{+}\right) \end{aligned}$	$\begin{aligned} & v_{\text {max }} / \mathrm{cm}^{-1} \\ & (\mathrm{C} \equiv \mathrm{C}) \end{aligned}$	Found (\%) (Required)		
			$\mathrm{Cl}_{2} \mathrm{CH}$	R^{1}			C	H	Cl
$\begin{aligned} & \mathbf{1 a} \\ & \left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{Cl}_{2}\right) \end{aligned}$	$55^{\text {a }}$	$\begin{aligned} & 68-70 \\ & (90) \end{aligned}$	$\begin{aligned} & 6.15(\mathrm{q}, J= \\ & 2.1 \mathrm{~Hz}) \end{aligned}$	$\begin{aligned} & 1.19(3 \mathrm{H}, \mathrm{~d}, J=2.1 \mathrm{~Hz}, \\ & \mathrm{Me}) \end{aligned}$	126/124/122	2240	$\begin{gathered} 39.14 \\ (39.07) \end{gathered}$	$\begin{gathered} 3.32 \\ (3.28) \end{gathered}$	$\begin{gathered} 57.48 \\ (57.66) \end{gathered}$
$\begin{aligned} & \text { lb } \\ & \left(\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{Cl}_{2}\right) \end{aligned}$	65^{a}	$\begin{aligned} & 90-92 \\ & (75) \end{aligned}$	6.12 (m)	$0.95(3 \mathrm{H}$, br t, $J=7.0 \mathrm{~Hz}$, $\mathrm{Me}), 152\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$, $2.29(2 \mathrm{H}$, br $\mathrm{t}, J=7.0$ $\left.\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{C} \equiv\right)$	154/152/150	2240	$\begin{gathered} 47.65 \\ (47.71) \end{gathered}$	$\begin{gathered} 5.41 \\ (5.34) \end{gathered}$	$\begin{gathered} 46.73 \\ (46.95) \end{gathered}$
$\begin{aligned} & \text { lc } \\ & \left(\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{Cl}_{2}\right) \end{aligned}$	60^{a}	$\begin{aligned} & 82-83 \\ & (23) \end{aligned}$	$\begin{aligned} & 6.17(\mathrm{~d}, J= \\ & 2.0 \mathrm{~Hz}) \end{aligned}$	$\begin{aligned} & 0.76\left(4 \mathrm{H}, \mathrm{~m}, 2 \times \mathrm{CH}_{2}\right), \\ & 1.23(1 \mathrm{H}, \mathrm{~m}, \mathrm{CH}) \end{aligned}$	152/150/148	2240	$\begin{gathered} 48.23 \\ (48.36) \end{gathered}$	$\begin{gathered} 4.02 \\ (4.06) \end{gathered}$	$\begin{gathered} 47.40 \\ (47.58) \end{gathered}$
$\begin{aligned} & \text { ld } \\ & \left(\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{Cl}_{2}\right) \end{aligned}$	60^{\prime}	$\begin{aligned} & 47-48 \\ & (13) \end{aligned}$	6.30 (s)	1.20 ($9 \mathrm{H}, \mathrm{s} 3 \times$,Me)	168/166/164	2235	$\begin{gathered} 50.87 \\ (50.94) \end{gathered}$	$\begin{gathered} 6.06 \\ (6.11) \end{gathered}$	$\begin{gathered} 42.83 \\ (42.96) \end{gathered}$
$\begin{aligned} & \text { le } \\ & \left(\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{Cl}_{2}\right) \end{aligned}$	$75^{\text {b }}$	m.p. 45	6.10 (s)	1.50-2.10(15 H, m, Ad)	246/244/242	2235	$\begin{gathered} 64.15 \\ (64.21) \end{gathered}$	$\begin{gathered} 6.72 \\ (6.63) \end{gathered}$	$\begin{gathered} 28.96 \\ (29.16) \end{gathered}$
$\begin{aligned} & \text { If } \\ & \left(\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{Cl}_{2}\right) \end{aligned}$	$60^{\text {b }}$	$76-78$ (1)	6.33 (s)	7.26 ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$)	188/186/184	2225	$\begin{gathered} 58.53 \\ (58.42) \end{gathered}$	$\begin{gathered} 3.21 \\ (3.27) \end{gathered}$	$\begin{gathered} 38.23 \\ (38.32) \end{gathered}$
$\stackrel{\mathbf{1 g}}{\left(\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{O}_{2}\right)}$		64-65 (1)	$\begin{aligned} & 6.20(\mathrm{~d}, J= \\ & 2.0 \mathrm{~Hz}) \end{aligned}$	$\begin{aligned} & 6.18(6 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}, \\ & 2 \times \mathrm{Me}), 3.55(4 \mathrm{H}, \mathrm{~m}, \\ & \left.2 \times \mathrm{CH}_{2}\right), 5.18(1 \mathrm{H}, \mathrm{~d}, \\ & J=2.0 \mathrm{~Hz}, \mathrm{CH}) \end{aligned}$	$\begin{aligned} & 169 / 167 / 165\left(\mathrm{M}^{+}-\right. \\ & \mathrm{EtO}), 141 / 139 / 177\left(\mathrm{M}^{+}\right. \\ & \left.-\mathrm{EtO}-\mathrm{C}_{2} \mathrm{H}_{4}\right) \end{aligned}$	absent	$\begin{gathered} 45.44 \\ (45.52) \end{gathered}$	$\begin{gathered} 5.66 \\ (5.73) \end{gathered}$	$\begin{gathered} 33.51 \\ (33.59) \end{gathered}$

${ }^{a}$ Based on the corresponding alcohol 6 . ${ }^{b}$ Based on the corresponding acetal 7. ${ }^{\text {c }}$ For compound $\mathbf{1 e} \delta_{11}\left(\mathrm{CDCl}_{3} ; 250 \mathrm{MHz}\right)$.

The formation of product $\mathbf{1 2}$ from compound 1 g on reaction with base (in contrast with $\mathbf{1 a - f}$) is possibly the result of stabilization of the anion $4\left[\mathrm{R}^{1}=(\mathrm{EtO})_{2} \mathrm{CH}, \mathrm{X}=\mathrm{Y}=\mathrm{Cl}\right]$ in the mesomeric form $(\mathrm{EtO})_{2} \mathrm{CH} \overline{\mathrm{C}}=\mathrm{C}=\mathrm{CCl}_{2}$ due to the influence of ethoxy groups.

Scheme 3 Reagents and conditions: i, powdered KOH, BTEAC (cat.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, ca. $20^{\circ} \mathrm{C}$; ii, Bu'OK, pentane, $-10^{\circ} \mathrm{C}$

The addition of carbene 5 c to (Z) - and (E)-but-2-enes was found to be cis-stereospecific, i.e. the cis relationship of R^{2} and R^{3} and of R^{4} and R^{5} in the substrate alkene were preserved in the product cyclopropanes. In accordance with the Skell hypothesis ${ }^{17}$ this carbene must be a singlet. Since all of the carbenes 5 have related structures one may assume a singlet nature for this species. It should be noted that no products
resulting from the addition of carbenes 5 to alkenes via $\mathrm{C}-3$ were found. This observation is consistent with the bent structure of carbenes 5 , which prevents delocalization of the π and n electrons: ${ }^{1} \mathrm{R} \stackrel{3}{\mathrm{C}} \equiv \stackrel{2}{\mathrm{C}}(\mathrm{Cl}) \stackrel{1}{\mathrm{C}}: \leftrightarrow: \stackrel{3}{\mathrm{C}}(\mathrm{R}) \stackrel{2}{\mathrm{C}} \equiv \stackrel{1}{\mathrm{C}} \mathrm{Cl}$, and also provides indirect evidence for the singlet nature of this species.

Experimental evidence for the electrophilicity of carbenes 5 was provided by means of relative rate studies of bromo(methylethynyl)carbene $\mathbf{5 g}$ with a set of standard alkenes, which are summarized in Table 4 together with the relative reactivity of dichlorocarbene ${ }^{18}$ under similar conditions. A plot of $\log \left(k_{\mathrm{i}} / k_{\mathrm{o}}\right)$ for carbene $5 \mathrm{~g} v s . \log \left(k_{\mathrm{i}} / k_{\mathrm{o}}\right)$ for dichlorocarbene in the standard manner gives a Moss carbenic selectivity index ${ }^{19}$ of $m=0.48$ (correlation coefficient 0.986) for carbene 5 g . The relative reactivity data of Table 4 and the corresponding $m=$ 0.48 clearly establish carbene 5 g as an electrophile. It is unlikely that the nature of substituents at the acetylene bond will significantly change the character of alkynylcarbenes 5 , therefore all of these carbenes should be regarded as electrophilic.

Table 2 Generation of carbenes 5 and their addition to alkenes 10 with formation of cyclopropanes 11

Carbene precursors	Reaction conditions ${ }^{a}$	Carbene			Alkene					Product (cis: trans) ${ }^{\text {b }}$	$\begin{aligned} & \text { Yield } \\ & (\%) \end{aligned}$
			R^{1}	X		R^{2}	R^{3}	R^{4}	R^{5}		
1a	iii	5a	Me	Cl	10a	Me	H	H	Me	11a	41
1 a	i	5a	Me	Cl	10a	Me	H	H	Me	11a	<5
1b	i	5b	Pr^{n}	Cl	10a	Me	H	H	Me	11b	60
1c	i	5c	$\mathrm{Pr}^{\text {c }}$	Cl	10a	Me	H	H	Me	11c	80
1d	i	5d	$\mathrm{Bu}^{\text {t }}$	Cl	10a	Me	H	H	Me	11d	53
3a	i	5d	$B u^{\text {t }}$	Cl	10a	Me	H	H	Me	11d	64
3a	iii	5d	$\mathrm{Bu}^{\text {t }}$	Cl	10a	Me	H	H	Me	11d	60
1e	i	5e	Ad	Cl	10a	Me	H	H	Me	11e	94
1f	iii	51	Ph	Cl	10a	Me	H	H	Me	11 f	60
1f	i	$5 f$	Ph	Cl	10a	Me	H	H	Me	11 f	<5
3b	iii	5 f	Ph	Cl	10a	Me	H	H	Me	11 f	56
2a	iii	5g	Me	Br	10a	Me	H	H	Me	11g	26
2b	i	5h	$B u^{t}$	Br	10a	Me	H	H	Me	11h	54
2b	iii	5h	$\mathrm{Bu}^{\text {t }}$	Br	10a	Me	H	H	Me	11h	56
2c	iii	5 i	Ph	Br	10a	Me	H	H	Me	111	50
2c	i	51	Ph	Br	10a	Me	H	H	Me	111	<5
1c	i	5c	$\mathrm{Pr}^{\text {c }}$	Cl	10b	Me	H	Me	H	11j	78
1c	i	5c	$\mathrm{Pr}^{\text {c }}$	Cl	10c	H			H	11k	80
1a	iii	5a	Me	Cl	10d	H			H	111	30
1a	i	5a	Me	Cl	10d	H			H	111	<5
1b	ii	5b	Pr^{n}	Cl	10d	H			H	11 m	60
1c	ii	5c	$\mathrm{Pr}^{\text {c }}$	Cl	10d	H			H	11n	65
2a	iii	5g	Me	Br	10e	Me	Me	Me	Me	110	44
1d	i	5d	$\mathrm{Bu}^{\text {t }}$	Cl	10e	Me	Me	Me	Me	11p	77
3a	i	5d	$B u^{t}$	Cl	10e	Me	Me	Me	Me	11p	70
2a	iii	5g	Me	Br	10 f	Me	Me	H	H	cis,trans-11q (1:1.7)	40
1c	i	5c	$\mathrm{Pr}^{\text {c }}$	Cl	10 f	Me	Me	H	H	cis,trans-11r (1:3)	84
2b	i	5h	$B u^{\text {t }}$	Br	10 f	Me	Me	H	H	cis,trans-11s (1:2.5)	40
2a	ii	5g	Me	Br	10g	Me	Me	Me	H	cis,trans-11t (1:1) ${ }^{\text {c }}$	41
1b	i	5b	$\mathrm{Pr}^{\text {n }}$	Cl	10h	$B u^{n}$	H	H	H	cis, trans-11u (1:2.5) ${ }^{\text {c }}$	35
1c	ii	5c	Pr ${ }^{\text {c }}$	Cl	10 i			H	H	cis,trans-11v (1:4)	42
1d	i	5d	$\mathrm{Bu}^{\text {t }}$	Cl	10 i			H	H	cis,trans-11w (1:3.4) ${ }^{\text {c }}$	93
1d	1	5d	$B u^{t}$	Cl	10 j	Ph	H	H	H	cis,trans-11x (1:2.3)	57
2b	i	5d	$B u^{t}$	Br	10j	Ph	H	H	H	cis,trans-11y (1:3)	60

${ }^{a}$ i, Method A; ii, method B; iii, method C (see the Experimental section). ${ }^{b}$ Ratios were determined by GLC. ${ }^{c}$ Ratio was determined from the ${ }^{1} \mathrm{H}$ NMR spectrum of the distilled product.

Experimental

GLC analysis of the starting material and products was carried out on a LCM-8 MD flame ionization gas chromatograph with an integrator $\mathrm{I}-02$ using the following $200 \times 0.3 \mathrm{~cm}$ columns: (1) 5% SP- 2100 on Inerton, 20 mesh; (2) 5% ES- 30 on Chromaton N-AW-DMCS, 20 mesh; (3) 15% Carbowax-6000 on Chromaton N-AW-DMCS, 20 mesh. Preparative work was performed on an LCP-71 gas chromatograph using a 200×10 cm column with 15% Carbowax- 6000 on Chromaton N-AWDMCS, 30 mesh. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Tesla BS-467 (60 MHz) or a Bruker WM-250 (250 MHz) spectrometer using 3-10\% CCl_{4} or CDCl_{3} solutions with tetramethylsilane (TMS) as an internal standard. ${ }^{13} \mathrm{C}$ NMR spectra were obtained on a Bruker AM-300 (70 MHz) spectrometer.

Coupling constant values J are given in Hz . IR spectra were recorded for a thin films or for CCl_{4} solutions on a UR-20 or a Specord M-80 spectrophotometer. Mass spectra were determined on a Varian MAT CH-6 mass spectrometer and either a Varian MAT 111 (column $300 \times 3 \mathrm{~cm}$, SE- 30 on Chromaton W) or a Finnigan MAT INCOS-50 gas chromatographmass sfectrometer (capillary column RSL-200, $30 \mathrm{~m} \times 0.25$ mm).
The following compounds were prepared according to previously described procedures: but-2-ynol 6a, ${ }^{20}$ hex- 2 -ynol $\mathbf{6 b}$, ${ }^{20}$ 4,4-dimethylpent-2-ynol 6d, ${ }^{20}$ 3-cyclopropylprop-2-ynol $\mathbf{6 c}$, ${ }^{21}$ 1,1-diethoxy-3-phenylprop-2-yne $\quad \mathbf{7 b},{ }^{22} \quad 1,1,4,4$-tetra-ethoxybut-2-yne 7c. ${ }^{13}$ The complex $\mathrm{Py}-\mathrm{CrO}_{3}-\mathrm{HCl}$ was prepared as described in ref. 23.
Table 3 Properties of cyclopropanes 11.

Compound (Formula)	$\begin{aligned} & \text { B.p. } /{ }^{\circ} \mathrm{C} \\ & (p / \mathrm{mmHg}) \end{aligned}$	$\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3} ; 250 \mathrm{MHz}\right)^{\text {b }}$					$\begin{gathered} m /= \\ \left(\mathrm{M}^{+}\right) \end{gathered}$	$\begin{aligned} & v_{\text {max }} / \mathrm{cm}^{1} \\ & (\mathrm{C}=\mathrm{C}) \end{aligned}$	Found ($\%$) (Required)	
		R^{1}	R^{2}	R^{3}	R^{4}	R^{5}			C	H
$\stackrel{11 \mathbf{a}}{\left(\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{Cl}\right)}$	59-61 (25)	1.80 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$)	1.23 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$)	$0.93(1 \mathrm{H}, \mathrm{d}, J=6.0)$	$0.89(1 \mathrm{H}, \mathrm{d}, J=6.0)$	1.20 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$)	144/142	2235	$\begin{gathered} 67.25 \\ (67.37) \end{gathered}$	$\begin{gathered} 7.73 \\ (7.77) \end{gathered}$
$\begin{aligned} & \mathbf{1 1 b} \\ & { }_{\left(\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{Cl}\right)} \end{aligned}$	77-79 (40)	$\begin{aligned} & 0.71-1.1 \quad(3 \mathrm{H}, \mathrm{~m}, \\ & \mathrm{Me}), \\ & \left.\mathrm{CH}_{2}\right), 2.5(2 \mathrm{H}, \mathrm{~m}, \\ & \left.\mathrm{CH}_{2} \mathrm{C} \equiv\right) \end{aligned}$	1.28 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$)	$0.7-1.1(2 \mathrm{H},$ overlapped	$\begin{aligned} & \mathrm{m}, \mathrm{H}^{3} \text { and } \mathrm{H}^{4}, \\ & \text { le in } \mathrm{R}^{1} \text {, } \end{aligned}$	1.25 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$)	172/170	2245	$\begin{gathered} 70.32 \\ (70.37) \end{gathered}$	$\begin{gathered} 8.82 \\ (8.86) \end{gathered}$
$\underset{\left(\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{Cl}\right)}{\text { 11c }}$	62-63 (3)		1.30 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$)	1.01 (2 H, br	, H^{3} and H^{4})	1.23 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$)	170/168	2230	$\begin{gathered} 71.20 \\ (71.21) \end{gathered}$	$\begin{gathered} 7.74 \\ (7.77) \end{gathered}$
$\begin{aligned} & \text { 11d } \\ & \left(\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{Cl}\right) \end{aligned}$	40-43(1)	$1.22(9 \mathrm{H}, \mathrm{s}, 3 \times \mathrm{Me})$	1.33 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$)	$1.04(1 \mathrm{H}, \mathrm{d}, J=7.5)$	$1.01(1 \mathrm{H}, \mathrm{d}, J=7.5)$	1.26 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$)	186/184	2235	$\begin{gathered} 71.46 \\ (71.53) \end{gathered}$	$\begin{gathered} 9.23 \\ (9.28) \end{gathered}$
$\begin{aligned} & 11 \mathrm{e}^{a} \\ & \left(\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{Cl}\right) \end{aligned}$		1.5-2.1 ($15 \mathrm{H}, \mathrm{m}, \mathrm{Ad}$)	1.25 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$)	0.91 ($2 \mathrm{H}, \mathrm{br}$, H^{3} and H^{4})	1.18 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$)	264/262	2230	$\begin{gathered} 77.74 \\ (77.69) \end{gathered}$	$\begin{gathered} 8.80 \\ (8.82) \end{gathered}$
${\stackrel{11 f}{\left(\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{Cl}\right)}}^{\text {(}}$	107-108 (1)	7.21-7.40 ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$)	1.42 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$)	$1.28(1 \mathrm{H}, \mathrm{d}, J=6.0)$	$1.19(1 \mathrm{H}, \mathrm{d}, J=6.0)$	1.39 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$)	206/204	2230	$\begin{gathered} 76.23 \\ (76.28) \end{gathered}$	$\begin{gathered} 6.39 \\ (6.40) \end{gathered}$
$\begin{aligned} & 11 \mathrm{~g} \\ & \left(\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{Br}\right) \end{aligned}$	61-62 (37)	1.88 (3 H, s, Me)	1.35 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$)	$1.11(1 \mathrm{H}, \mathrm{d}, J=5.9)$	$1.05(1 \mathrm{H}, \mathrm{d}, J=5.9)$	1.27 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$)	188/186	2255	$\begin{gathered} 51.20 \\ (51.36) \end{gathered}$	$\begin{gathered} 5.85 \\ (5.93) \end{gathered}$
${ }_{\left(\mathrm{C}_{1}, \mathrm{H}_{1}, \mathrm{Br}\right)}$	69-70 (5)	$1.21(9 \mathrm{H}, \mathrm{s}, 3 \times \mathrm{Me})$	1.37 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$)	$1.17(1 \mathrm{H}, \mathrm{d}, J=8.0)$	$1.08(1 \mathrm{H}, \mathrm{d}, J=8.0)$	1.28 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$)	230/228	2235	$\begin{gathered} 57.73 \\ (57.65) \end{gathered}$	$\begin{gathered} 7.52 \\ (7.48) \end{gathered}$
$\stackrel{11 i}{{ }_{\left(\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{Br}\right)}}$	113-115 (1)	7.20-7.45 ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$)	1.47 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$)	$1.36(1 \mathrm{H}, \mathrm{d}, J=6.0)$	$1.26(1 \mathrm{H}, \mathrm{d}, J=6.0)$	1.41 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$)	250/248	2225	$\begin{gathered} 62.76 \\ (62.67) \end{gathered}$	$\begin{gathered} 5.35 \\ (5.26) \end{gathered}$
$\begin{aligned} & 11 \mathbf{j} \\ & \left(\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{Cl}\right) \end{aligned}$	78-79 (6)	$\begin{aligned} & 0.58-0.77(4 \mathrm{H}, \mathrm{~m}, 2 \times \\ & \left.\mathrm{CH}_{2}\right), 1.22(1 \mathrm{H}, \mathrm{~m}, \\ & \mathrm{CH}) \end{aligned}$	$\begin{aligned} & 1.16(3 \mathrm{H}, \mathrm{~d}, J=7.0 \text {, } \\ & \mathrm{Me}) \end{aligned}$	$\begin{aligned} & 0.93(1 \mathrm{H}, \mathrm{dq}, \quad J= \\ & 7.0,6.0) \end{aligned}$	$\begin{aligned} & 1.10(3 \mathrm{H}, \mathrm{~d}, J=7.0, \\ & \mathrm{Me}) \end{aligned}$	$\begin{aligned} & 0.83(1 \mathrm{H}, \mathrm{dq}, J= \\ & 7.0,6.0) \end{aligned}$	170/168	2230	$\begin{gathered} 71.23 \\ (71.21) \end{gathered}$	$\begin{gathered} 7.76 \\ (7.77) \end{gathered}$
$\stackrel{11 k}{\left(\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{Cl}\right)}$	68-70 (2)	$\begin{aligned} & 0.58-0.86(4 \mathrm{H}, \mathrm{~m}, 2 \times \\ & \left.\mathrm{CH}_{2}\right), 1.20(1 \mathrm{H}, \mathrm{~m}, \\ & \mathrm{CH}) \end{aligned}$	$1.62(1 \mathrm{H}, \mathrm{d}, J=5.5)$	0.95-1.16 (4	, m, $2 \times \mathrm{CH}_{2}$)	$1.58(1 \mathrm{H}, \mathrm{d}, J=5.5)$	168/166	2240	$\begin{gathered} 72.04 \\ (72.07) \end{gathered}$	$\begin{gathered} 6.63 \\ (6.65) \end{gathered}$
$\begin{aligned} & 111 \\ & \left(\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{Cl}\right) \end{aligned}$	106-108 (43)	1.88 ($3 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{Me}$)	$1.14(1 \mathrm{H}$, br d, $J=$ 6.1)	$\begin{aligned} & 1.95-2.20(4) \\ & 2.20-2.35(21 \end{aligned}$	$\begin{aligned} & \left.\mathrm{I}, \mathrm{~m}, 2 \times \mathrm{CH}_{2}\right), \\ & \left.\mathrm{f}, \mathrm{~m}, \mathrm{CH}_{2}\right) \end{aligned}$	$\begin{aligned} & 1.07(1 \mathrm{H}, \text { br d, } J= \\ & 6.1) \end{aligned}$	156/154	2240	$\begin{gathered} 69.86 \\ (69.90) \end{gathered}$	$\begin{gathered} 7.14 \\ (7.17) \end{gathered}$
	63-65 (6)	$\begin{aligned} & 0.97(3 \mathrm{H}, \mathrm{brt}, \mathrm{~J}=7.1, \\ & \mathrm{Me}), 1.5(2 \mathrm{H}, \mathrm{~m}, \\ & \left.\mathrm{CH}_{2}\right), 1.8-2.6(2 \mathrm{H}, \mathrm{~m}, \\ & \left.\mathrm{CH}_{2} \mathrm{C} \equiv\right) \end{aligned}$	$1.15(1 \mathrm{H}, \mathrm{d}, J=6.0)$	1.8-2.6 (6 H	$\mathrm{m}, 3 \times \mathrm{CH}_{2}$)	$1.05(1 \mathrm{H}, \mathrm{d}, J=6.0)$	184/182	2250	$\begin{gathered} 72.22 \\ (72.32) \end{gathered}$	$\begin{gathered} 8.24 \\ (8.28) \end{gathered}$
$\stackrel{11 \mathrm{n}}{\left(\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{Cl}\right)}$	78-79 (2)	$\begin{aligned} & 0.60-0.83(4 \mathrm{H}, \mathrm{~m}, 2 \times \\ & \left.\mathrm{CH}_{2}\right), 1.20(1 \mathrm{H}, \mathrm{~m}, \\ & \mathrm{CH}) \end{aligned}$	$1.14(1 \mathrm{H}, \mathrm{d}, J=6.0)$	1.85-2.65 (6	H, m, $3 \times \mathrm{CH}_{2}$)	$1.06(1 \mathrm{H}, \mathrm{d}, J=6.0)$	182/180	2235	$\begin{gathered} 73.10 \\ (73.13) \end{gathered}$	$\begin{gathered} 7.28 \\ (7.25) \end{gathered}$
${ }_{\left(\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{Br}\right)}$	62-63(7)	1.92 (3 H, s, Me)	$1.21\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Me}^{2}\right.$ and $\left.\mathrm{Me}^{3}\right)$) $1.18(6 \mathrm{H}, \mathrm{s}$,			Me^{4} and Me^{5})	218/216	2245	$\begin{gathered} 55.71 \\ (55.83) \end{gathered}$	$\begin{gathered} 6.94 \\ (7.03) \end{gathered}$
$\begin{aligned} & 11 \mathbf{p} \\ & \left(\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{Cl}\right) \end{aligned}$	M.p. 85	1.15 (9 H, s, 3 Me)	1.07 ($12 \mathrm{H}, \mathrm{s}, \mathrm{Me}^{2}, \mathrm{Me}^{3}, \mathrm{Me}^{4}$ and Me^{5})				202/200	2230	$\begin{gathered} 73.24 \\ (73.39) \end{gathered}$	$\begin{gathered} 9.91 \\ (9.95) \end{gathered}$

Table 3 (continued)

[^1]Synthesis of 1,1-Dichloroalk-2-ynes 1a-d from Prop-2-ynols 6a-d (General Procedure).-Alcohols 6a-d (0.25 mol) were added at $10-15^{\circ} \mathrm{C}$ over 15 min to a suspension of the complex $\mathrm{Py}-\mathrm{CrO}_{3}-\mathrm{HCl}(76.8 \mathrm{~g}, 0.36 \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(500 \mathrm{~cm}^{3}\right)$. The reaction mixture was stirred at ambient temperature for 2.5 h . After being cooled to $-10^{\circ} \mathrm{C}$ the mixture was filtered through neutral $\mathrm{Al}_{2} \mathrm{O}_{3}$. To the resulting solution at $-20^{\circ} \mathrm{C}$ pyridine (2 $\mathrm{g}, 0.025 \mathrm{~mol})$ and then powdered $\mathrm{PCl}_{5}(48 \mathrm{~g}, 0.23 \mathrm{~mol})$ were added. The reaction mixture was stirred at $-20^{\circ} \mathrm{C}$ for $20-30$ min and neutralized with $\mathrm{NaHCO}_{3}(105 \mathrm{~g}, 1.25 \mathrm{~mol})$. The mixture was kept at $0-5{ }^{\circ} \mathrm{C}$ for 16 h and the solid was filtered off. After evaporation of the filtrate the residue was distilled in vacuo.

1,1-Dichlorobut-2-yne 1a, 1,1-dichlorohex-2-yne 1b, 1,1-dich-loro-3-cyclopropylprop-2-yne 1 c and 1,1-dichloro-4,4-dimethyl-pent-2-yne 1d were obtained in this way. The yields and properties of these compounds are given in Table 1.

Synthesis of 1,1-Dichloroalk-2-ynes 1e-g from Propargyl Acetals 7a-c (General Procedure).-A solution of formic acid ($90 \mathrm{~cm}^{3}, 2.3 \mathrm{~mol}$) in $\mathrm{CHCl}_{3}\left(85 \mathrm{~cm}^{3}\right)$ was added to a solution of the acetal (0.1 mol) and $\mathrm{CHCl}_{3}\left(120 \mathrm{~cm}^{3}\right)$ at $40-45^{\circ} \mathrm{C}$. After being cooled to $20^{\circ} \mathrm{C}$ the mixture was washed with water until a pH of 6 was achieved and dried over MgSO_{4}. The resulting solution of the aldehyde in CHCl_{3} then was chlorinated with PCl_{5} as described above. 3-Adamantyl-1,1-dichloroprop-2-yne 1e, 1,1-dichloro-3-phenylprop-2-yne if and 1,1-dichloro-4,4-diethoxybut- 2 -yne 1 g were obtained according to this procedure. The yields and properties of these compounds are given in Table 1.

Synthesis of 1,1-Dibromoalk-2-ynes 2a-c and 1-Bromo-1-chloroalk-2-ynes 3a, b from Alcohols $\mathbf{6}$ (General Procedure).-To a suspension of the complex $\mathrm{Py}-\mathrm{CrO}_{3}-\mathrm{HCl}(72.8 \mathrm{~g}, 0.34 \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(450 \mathrm{~cm}^{3}\right)$ at $10-15^{\circ} \mathrm{C}$ was added the alcohol 6 over 15 \min. The mixture was stirred at ambient temperature for 2.5 h and filtered through neutral $\mathrm{Al}_{2} \mathrm{O}_{3}$. Pyridine ($1.6 \mathrm{~g}, 0.02 \mathrm{~mol}$) and then a mixture of PCl_{3} and Br_{2} [obtained previously by addition of $\mathrm{Br}_{2}(32.4 \mathrm{~g}, 0.2 \mathrm{~mol})$ to a solution of $\mathrm{PCl}_{3}(27.4 \mathrm{~g}, 0.2$ $\mathrm{mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(90 \mathrm{~cm}^{3}\right)$ at $-20^{\circ} \mathrm{C}$ and subsequent stirring for 1 h at $0^{\circ} \mathrm{C}$] were added to the filtrate at $-70^{\circ} \mathrm{C}$. The mixture was stirred at $-50^{\circ} \mathrm{C}$ until the starting aldehyde disappeared (monitored by GLC, ca. 40 min) and worked up with NaHCO_{3}, as described above. After removal of the solid, the resulting solution was filtered through silica gel. The solvent was evaporated off and the residue was distilled in vacuo to yield compounds 2 and 3.

1,1-Dibromobut-2-yne 2a. As described above, starting from alcohol 6 ($14.02 \mathrm{~g}, 0.2 \mathrm{~mol}$) a mixture ($14.83 \mathrm{~g}, 35 \%$) of compound 2a and 1,3-dibromobuta-1,2-diene 9 was obtained in a $2: 1$ ratio, b.p. $80-89^{\circ} \mathrm{C}$ at 25 mmHg . After distillation compound 2a was isolated, b.p. $87-89^{\circ} \mathrm{C}$ at 25 mmHg ; $v_{\max } / \mathrm{cm}^{-1} 2247(\mathrm{C} \equiv \mathrm{C}) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.04(3 \mathrm{H}, \mathrm{d}$, $\left.J=3, \mathrm{CH}_{3}\right)$ and $6.07(1 \mathrm{H}, \mathrm{q}, J=3, \mathrm{C} \equiv \mathrm{CH}) ; m / z 133 / 131$ $\left(\mathrm{M}^{+}-\mathrm{Br}\right), 81 / 79,52\left(\mathrm{M}^{+}-2 \mathrm{Br}\right), 51\left(\mathrm{M}^{+}-\mathrm{Br}-\mathrm{HBr}\right)$ (Found: C, 22.6; H, 1.9. $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{Br}_{2}$ requires $\mathrm{C}, 22.67 ; \mathrm{H}$, 1.90%).

Compound 9 was identified without being separated from the mixture, $v_{\max } / \mathrm{cm}^{-1} 1960(\mathrm{C}=\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.43$ $\left(3 \mathrm{H}, \mathrm{d}, J=3, \mathrm{CH}_{3}\right)$ and $6.09(1 \mathrm{H}, \mathrm{q}, J=3, \mathrm{C}=\mathrm{CH}) ; m / z$ $133 / 131\left(\mathrm{M}^{+}-\mathrm{Br}\right), 81 / 79,52\left(\mathrm{M}^{+}-2 \mathrm{Br}\right)$ and $51\left(\mathrm{M}^{+}-\right.$ $\mathrm{Br}-\mathrm{HBr}$).

In the same way, starting from 4,4-dimethylpent-2-ynol 6d ($22.5 \mathrm{~g}, 0.2 \mathrm{~mol}$) a mixture ($14.4 \mathrm{~g}, 30 \%$) of compounds 2 b and $\mathbf{3 a}$ was obtained in the ratio $4: 1$ and were separated by distillation.

Compound 2b, b.p. $64-65^{\circ} \mathrm{C}$ at $3 \mathrm{mmHg} ; y_{\text {max }} / \mathrm{cm}^{-1} 2235$ $(\mathrm{C} \equiv \mathrm{C}) ; \delta_{\mathrm{H}}\left(60 \mathrm{MHz} ; \mathrm{CCl}_{4}\right) 1.18\left(9 \mathrm{H}, \mathrm{s}, 3 \times \mathrm{CH}_{3}\right)$ and $5.94(1$ $\mathrm{H}, \mathrm{s}, \mathrm{CHBr}_{2}$); m/z 175/173 ($\mathrm{M}^{+}-\mathrm{Br}$), $160 / 158\left(\mathrm{M}^{+}-\mathrm{Br}-\right.$

Table 4 Relative reactivities of bromo(methylethynyl)carbene $\mathbf{5 g}$ and dichlorocarbene $\mathrm{Cl}_{2} \mathrm{C}$: towards alkenes

Alkene	$\mathrm{MeC} \equiv \mathrm{CC} \mathrm{CBr}$	$\mathrm{Cl}_{2} \mathrm{C}^{\cdot a}$
2,3-Dimethylbut-2-ene	3.12 ± 0.05	7.41
2-Methylbut-2-ene	1.64 ± 0.03	3.05
2-Methylpropene	1	1
(Z)-But-2-ene	0.59 ± 0.05	0.23

${ }^{a}$ Via $\mathrm{CHCl}_{3}, \mathrm{Bu}^{\prime} \mathrm{OK} .{ }^{18}$
$\left.\mathrm{CH}_{3}\right), 94\left(\mathrm{M}^{+}-2 \mathrm{Br}\right)$ and $79 / 77$ (Found: C, 33.25; H, 4.1. $\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{Br}_{2}$ requires $\mathrm{C}, 33.11 ; \mathrm{H}, 3.97 \%$).

Compound 3a, b.p. $50-52{ }^{\circ} \mathrm{C}$ at $3 \mathrm{mmHg}, v_{\text {max }} / \mathrm{cm}^{-1} 2235$ $(\mathrm{C} \equiv \mathrm{C}) ; \delta_{\mathrm{H}}\left(60 \mathrm{MHz} ; \mathrm{CCl}_{4}\right) 1.17\left(9 \mathrm{H}, \mathrm{s}, 3 \times \mathrm{CH}_{3}\right)$ and $6.00(1$ $\mathrm{H}, \mathrm{s}, \mathrm{CHClBr}) ; m / z 131 / 129\left(\mathrm{M}^{+}-\mathrm{Br}\right), 116 / 114\left(\mathrm{M}^{+}-\mathrm{Br}-\right.$ $\left.\mathrm{CH}_{3}\right), 94\left(\mathrm{M}^{+}-\mathrm{Br}-\mathrm{Cl}\right)$ and 79/77 (Found: C, 40.0; H, 4.7. $\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{BrCl}$ requires $\mathrm{C}, 40.13 ; \mathrm{H}, 4.81 \%$).

1,1-Dibromo-3-phenylprop-2-yne 2c and 1-Bromo-1-chloro-3-phenylprop-2-yne 3b.-A mixture of PCl_{3} and Br_{2} [which had previously been obtained by addition of $\mathrm{Br}_{2}(32.4 \mathrm{~g}, 0.2 \mathrm{~mol})$ to a solution of $\mathrm{PCl}_{3}(27.4 \mathrm{~g}, 0.2 \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(90 \mathrm{~cm}^{3}\right)$ at $-20^{\circ} \mathrm{C}$ and subsequent stirring for 1 h at $\left.0^{\circ} \mathrm{C}\right]$ was added to a solution of phenyl(formyl)acetylene $8 \mathrm{ff}(26 \mathrm{~g}, 0.2 \mathrm{~mol})$ and pyridine ($1.6 \mathrm{~g}, 0.02 \mathrm{~mol}$), in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(250 \mathrm{~cm}^{3}\right)$ at $-50^{\circ} \mathrm{C}$. The mixture was stirred at $-50^{\circ} \mathrm{C}$ until the aldehyde 8 f disappeared (ca. 40 min , GLC monitoring) and treated with NaHCO_{3} as described above. After removal of the solid, the resulting residue was filtered through silica gel. After evaporation the residue was distilled in vacuo, to yield an equimolar mixture of compounds 2c and 3b, b.p. $106-125^{\circ} \mathrm{C}$ at 1 mmHg . The products were separated by distillation.
Compound 2c, b.p. $125-126^{\circ} \mathrm{C}$ at $1 \mathrm{mmHg} ; v_{\text {max }} / \mathrm{cm}^{-1} 2212$ $(\mathrm{C} \equiv \mathrm{C}) ; \delta_{\mathrm{H}}\left(60 \mathrm{MHz} ; \mathrm{CCl}_{4}\right) 6.17\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CHBr}_{2}\right)$ and $7.28(5 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{C}_{6} \mathrm{H}_{5}\right) ; m /=276 / 274 / 272\left(\mathrm{M}^{+}\right), 195 / 193\left(\mathrm{M}^{+}-\mathrm{Br}\right)$ and 114 ($\mathrm{M}^{+}-2 \mathrm{Br}$) (Found: C, 39.6; H, 2.3. $\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{Br}_{2}$ requires C, 39.46; H, 2.21%).
Compound 3b, b.p. $105-106^{\circ} \mathrm{C}$ at $1 \mathrm{mmHg} ; v_{\max } / \mathrm{cm}^{-1} 2214$ $(\mathrm{C} \equiv \mathrm{C}) ; \delta_{\mathrm{H}}\left(60 \mathrm{MHz} ; \mathrm{CCl}_{4}\right) 6.30(1 \mathrm{H}, \mathrm{s}, \mathrm{CHClBr})$ and $7.28(5 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5}\right) ; m / z 232 / 230 / 228\left(\mathrm{M}^{+}\right), 195 / 193\left(\mathrm{M}^{+}-\mathrm{Cl}\right), 151 / 149$ $\left(\mathrm{M}^{+}-\mathrm{Br}\right)$ and $114\left(\mathrm{M}^{+}-\mathrm{Br}-\mathrm{Cl}\right)$ (Found: C, 47.0; $\mathrm{H}, 2.55$. $\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{BrCl}$ requires $\mathrm{C}, 47.10 ; \mathrm{H}, 2.64 \%$).

Basic Solvolysis of 1,1-Dihaloalk-2-ynes 1 in the Presence of Alkenes (General Procedure).-Method A. The dichloride 1 (0.01 mol) was added to a suspension of an alkene ($0.07-0.1$ mol), powdered $\mathrm{KOH}(2.2 \mathrm{~g}, 0.04 \mathrm{~mol})$ and BTEAC $(0.1 \mathrm{~g}$, $0.0005 \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(20 \mathrm{~cm}^{3}\right)$ at $5-20^{\circ} \mathrm{C}$ for 15 min . The mixture was stirred at ambient temperature until the starting dichloride 1 had disappeared (2-4 h, GLC monitoring) and filtered. Thereafter, the solvent was evaporated off and the resulting residue was distilled in vacuo.
Method B. The dichloride 1 was added to a suspension of the alkene ($0.07-0.1 \mathrm{~mol}$), powdered $\mathrm{KOH}(2.2 \mathrm{~g}, 0.04 \mathrm{~mol})$ and BTEAC ($0.1 \mathrm{~g}, 0.0005 \mathrm{~mol}$) in hexane ($20 \mathrm{~cm}^{3}$) for 15 min . The mixture was stirred at $40-45^{\circ} \mathrm{C}$ until the starting dichloride had disappeared ($3-5 \mathrm{~h}$, GLC monitoring) and filtered. The solvent was evaporated off and the residue was distilled in vacuo.

Method C. Compound $1(0.01 \mathrm{~mol})$ was added to a suspension of alkene ($0.07-0.1 \mathrm{~mol}$) and $\mathrm{Bu}^{\prime} \mathrm{OK}$ ($2.24 \mathrm{~g}, 0.02 \mathrm{~mol}$) in pentane $\left(10 \mathrm{~cm}^{3}\right)$ cooled to $-20^{\circ} \mathrm{C}$. The reaction mixture was stirred at ambient temperature for 0.5 h . The temperature was then raised to $0^{\circ} \mathrm{C}$ and stirring was continued until the starting dichloride had disappeared (GLC monitoring). The solid was filtered off through silica gel. After evaporation of the filtrate the residue was distilled in vacuo. The preparative data and
properties of cyclopropanes $11 \mathbf{a}-\mathbf{y}$ prepared in this way are given in Tables 2 and 3.

1,1-Dichloro-4,4-diethoxybuta-1,2-diene 12.-As described above $(\operatorname{method} \mathrm{A})$, starting from the dichloride $1 \mathrm{~g}(1.8 \mathrm{~g}, 8.5$ mmol) in the presence of alkene 10 e , the title compound 12 (1.2 g, 67%) was obtained, b.p. $56-58{ }^{\circ} \mathrm{C}$ at $1 \mathrm{mmHg} ; v_{\text {max }} / \mathrm{cm}^{-1} 1975$ ($\mathrm{C}=\mathrm{C}=\mathrm{C}$); $m / z 165\left(\mathrm{M}^{+}-\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}, 12 \%\right.$), 109 (28), 103 (70), 75 (52) and $47(100) ; \delta_{\mathrm{H}} 1.17\left(6 \mathrm{H}, \mathrm{t}, J=7.0,2 \times \mathrm{CH}_{3}\right), 3.50(4 \mathrm{H}, \mathrm{m}$, $\left.2 \times \mathrm{CH}_{2}\right), 4.90(1 \mathrm{H}, \mathrm{d}, J=5.0, \mathrm{CH})$ and $5.53(1 \mathrm{H}, \mathrm{d}, J=5.0$, $\mathrm{CH}=$) (Found: C, 45.45 ; H, 5.7. $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{O}_{2}$ requires $\mathrm{C}, 45.52$; H, 5.73%).
Similarly, starting from the dichloride $1 \mathrm{~g}(0.9 \mathrm{~g}, 4.25 \mathrm{mmol})$ and using method C only, the diene $12(0.4 \mathrm{~g}, 44 \%)$ was again obtained.

Stereoselectivity of Addition of Chloro(cyclopropylethynyl)carbene 5 c to (Z) - and (E)-But-2-enes. -The reaction of the dichloride 1c with (Z)-but-2-ene 10 f [$>99 \%$ pure, (E)-but-2-ene 10b impurity $<1 \%$] was carried out as above (method A). When the reaction was complete the mixture was analysed using GC [column (3), at $170^{\circ} \mathrm{C}$] and was found to contain cis($66.7 \pm 0.5 \%$) and trans-isomers ($33.1 \pm 0.5 \%$) of cis-1-chloro-1-cyclopropylethynyl-2,3-dimethylcyclopropane 11 r and only a trace amount of trans-2,3-dimethylcyclopropane 11 j , which evidently originated from $\mathbf{1 0 b}$ in the starting alkene. The cisand trans-isomers were separated by preparative GC at $180^{\circ} \mathrm{C}$ and their structures were established by IR, ${ }^{1} \mathrm{H}$ NMR and mass spectrometry (see Table 2).

The reaction with (E)-but-2-ene 10b [$>99 \%$ pure, (Z)-but-2ene $10 f$ impurity $<1 \%$] was carried out in a manner similar to that described for 10f. GC analysis [column (3), at $170^{\circ} \mathrm{C}$] showed that trans-dimethylcyclopropane $\mathbf{1 1 j}$ and only traces of cyclopropane cis-, trans-11r were formed. The properties and spectral data of 11 j are listed in Tables 2 and 3.

Relative Rate Determinations for Bromo(methylethynyl)carbene 5g (General Procedure). -The dibromide $\mathbf{2 a}$ ($2.1 \mathrm{~g}, 0.01$ mol) was added to a suspension of freshly sublimed Bu'OK (2.24 $\mathrm{g}, 0.02 \mathrm{~mol}$) in a solution of a binary mixture of the appropriate alkene [2,3-dimethylbut-2-ene, 2-methylbut-2-ene or (Z)-but-2ene] (0.1 mol) and 2-methylpropene ($5.6 \mathrm{~g}, 0.1 \mathrm{~mol}$) in pentane $\left(20 \mathrm{~cm}^{3}\right)$ at $-10^{\circ} \mathrm{C}$ under Ar. After being stirred for 30 min at the same temperature the mixture was analysed by means of analytical flame ionization GC coupled to an integrator [column (1), at $120^{\circ} \mathrm{C}$]. Six product ratios were determined for each pair of alkenes and averaged. The determined relative rates
are summarized in Table 4. These were used for the calculation of Moss carbenic selectivity index, which is defined as the leastsquares slope of $\log \left(k_{\mathrm{i}} / k_{\mathrm{o}}\right)$ for carbene $\mathbf{5 g}$ vs. $\log \left(k_{\mathrm{i}} / k_{\mathrm{o}}\right)$ for dichlorocarbene, $m=0.48$, correlation coefficient 0.986 .

References

1 W. Kirmse, Carbene Chemistry, Academic Press, New York and London, 1971, 278.
2 P. J. Stang, Chem. Rev., 1978, 78, 383; M. B. D'Amore and R. G. Bergman, J. Am. Chem. Soc., 1969, 91, 5694; R. G. Bergman and V. I. Rajadhyaksha, J. Am. Chem. Soc., 1970, 92, 2163; P. S. Skell and J. Klebe, J. Am. Chem. Soc., 1960, 82, 247; R. J. Kempf, J. V. Gramans and P. S. Skell, J. Chem. Phy:s., 1965, 43, 196.
3 H. Hauptmann, Tetrahedron, 1976, 32, 1293.
4 R. Selvarajan and J. H. Boyer, J. Org. Chem., 1971, 36, 1679.
5 Y. Hori, K. Noda, S. Kobayshi and H. Tanigachi, Tetrahedron Lett., 1969, 10, 3563.
6 M. Franck-Neumann and P. Geoffroy, Tetrahedron Lett., 1983, 24, 1779; M. Franck-Neumann, P. Geoffroy and J. J. Lohmann, Tetrahedron Lett., 1983, 24, 1775.
7 W. Kirmse, Carbene Chemistry, Academic Press, New York and London, 1971, 136; O. M. Nefedov, A. I. Ioffe and L. G. Menchikov, Carbene Chemistry, Chimia, Moscow, 1990.
8 V. I. Faustov and A. I. Ioffe in Chemistry of Carbenes and Small-sized Cyclic Compounds, ed. O. M. Nefedov, MIR, Moscow, 1989.
9 K. N. Shavrin, I. E. Dolgy and O. M. Nefedov, SSSR P 1131174/1984.
10 K. N. Shavrin and O. M. Nefedov, Izv. Akad. Nauk SSSR. Ser. Khim., 1987, 1196; K. N. Shavrin, 1. E. Dolgy and O. M. Nefedov, USSR P 1100816/1984.
11 J. C. Sauer, Org. Synth., Coll. Vol. 4, 1963, 813.
12 G. Piancatelli, A. Scettri and M. D’Auria, Sinthesis, 1982, 245.
13 A. Gorgues and A. Le Coq, Tetrahedron Lett., 1979, 4825.
14 T. Liese and A. de Meijere, Chem. Ber., 1986, 119, 2995.
15 S. Keyaniyan, W. Göthling and A. de Meijere, Chem. Ber., 1987, 120, 395; W. Weber and A. de Meijere, Chem. Ber., 1985, 118, 2450.
16 R. A. Moss and R. Gerstl, Tetrahedron, 1966, 22, 2637; R. A. Moss, J. R. Whittle and P. Freidenreich, J. Org. Chem., 1969, 34, 2220.

17 P. S. Skell and A. Y. Garner, J. Am. Chem. Soc., 1956, 78, 5430; P. S. Skell and R. C. Woodworth, J. Am. Chem. Soc., 1956, 78, 3409, 4496.
18 R. A. Moss and R. Gerstl, J. Org. Chem., 1967, 32, 2268.
19 R. A. Moss, Acc. Chem. Res., 1980, 13, 58.
20 K. E. Schulte and K. P. Reiss, Chem. Ber., 1954, 87, 964.
21 I. E. Dolgy, K. N. Shavrin and S. V. Pavlycheva, Izv. Akad. Nauk SSSR, Ser. Khim., 1985, 2146.
22 B. W. Howk and J. C. Sauer, Org. Synth., Coll. Vol. 4, 1963, 801.
23 E. J. Corey and J. W. Suggs, Tetrahedron Lett., 1975, 2647.

Paper 1/04146K
Received 8th August 1991
Accepted 30th August 1991

[^0]: † This paper was submitted to mark the 150th anniversary of the Chemical Society/Royal Society of Chemistry.

[^1]: ${ }^{a}$ Purified by chromatography on silica gel in hexane. ${ }^{b}$ For compounds $\mathbf{1 1 a}, \mathbf{b}, \mathbf{c}, \mathbf{e}, \mathbf{k}, \mathbf{m}, \mathbf{p}, \mathbf{u}, \mathbf{v} \delta_{11}\left(\mathrm{CCl}_{4} ; 60 \mathrm{MHz}\right)$.

